Sept 12 Math 2253H sec. 05H Fall 2014

Section 2.6: Implicit differentiation

Recall Explicit -vs- Implicit Functions: A function is defined explicitly when given in the form

$$
y=f(x) .
$$

A function is defined implicitly when it is given as a relation

$$
F(x, y)=C,
$$

for constant C.

Finding a Derivative Using Implicit Differentiation:

- Take the derivative of both sides of an equation with respect to the independent variable.
- Use all necessary rules for differenting powers, products, quotients, trig functions, compositions, etc.
- Remember the chain rule for each term involving the dependent variable (e.g. mult. by $\frac{d y}{d x}$ as required).
- Use necessary algebra to isolate the desired derivative.

Example

Find $\frac{d S}{d r}$.

$$
\sqrt{S r}+S=r^{2}+2
$$

$$
\frac{d S}{d r}=\frac{4 r \sqrt{5 r}-S}{r+2 \sqrt{s r}}
$$

Example
Find the equation of the line tangent to the graph of $x^{3}+y^{3}=6 x y$ at the point $(3,3)$.

Let's verify that $(3,3)$ is on the curve.
left: $(3)^{3}+(3)^{3}=27+27=54$
right: $6(3)(3)=6 \cdot 9=54$
We need the slope $m . \quad m=\left.\frac{d y}{d x}\right|_{(3,3)}$
Find $\frac{d y}{d x}$:

$$
3 x^{2}+3 y^{2} \frac{d y}{d x}=6\left(1 y+x \frac{d y}{d x}\right)
$$

$$
\begin{aligned}
& 3 y^{2} \frac{d y}{d x}-6 x \frac{d y}{d x}=6 y-3 x^{2} \\
& \left(3 y^{2}-6 x\right) \frac{d y}{d x}=6 y-3 x^{2} \\
& \frac{d y}{d x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x}=\frac{3\left(2 y-x^{2}\right)}{3\left(y^{2}-2 x\right)}=\frac{2 y-x^{2}}{y^{2}-2 x} \\
& m=\left.\frac{d y}{d x}\right|_{(3,3)}=\frac{2(3)-3^{2}}{3^{2}-2(3)}=\frac{-3}{3}=-1
\end{aligned}
$$

The line is $y-3=-1(x-3)$

$$
\Rightarrow y=-x+6
$$

Figure: Folium of Descartes $x^{3}+y^{3}=6 x y$

Figure: Folium of Descartes with tangent line at $(3,3)$

Recap of the Chain Rule

Suppose t is an independent variable. If u is a function of t, and y is a function of u, then y is in turn a function of t.

When these functions are differentiable

$$
\frac{d y}{d t}=\frac{d y}{d u} \frac{d u}{d t} .
$$

