Example

A reservoir in the shape of an inverted right circular cone has height 10m and base radius 6m. If water is flowing into the reservoir at a constant rate of $50m^3/min$. What is the rate at which the height of the water is increasing when the height is 5m?

Let r and h be the radius and height
of the water, respectively.
If the volume of well is V, then
$$V = \frac{\pi}{3}r^2h$$

Given: $\frac{dV}{dt} = 50 \frac{m^3}{min}$

Q:
$$\frac{dh}{dt} = ?$$
 when $h = 5m$
By Similar triangles
 $\frac{\Gamma}{h} = \frac{b}{10} \Rightarrow \Gamma = \frac{3}{5}h$
So $V = \frac{\pi}{3}(\frac{3}{5}h)^2h \Rightarrow V = \frac{3\pi}{35}h^3$
Take $\frac{d}{dt}$ of both sides : $\frac{dV}{dt} = \frac{3\pi}{35}(3h^2)\frac{dh}{dt}$

September 16, 2014 3 / 16

୬ବଙ

・ロン ・御と ・ヨン ・ヨン 三日

()

$$\frac{dV}{dt} = \frac{9\pi}{35} h^2 \frac{dh}{dt} \implies \frac{dh}{dt} = \frac{dV}{dt} \left(\frac{35}{4\pi}\right) \frac{1}{h^2}$$

When
$$h = 5m$$

 $\frac{dh}{dt} = (50 \frac{m^3}{min}) (\frac{25}{9\pi}) \frac{1}{(5m)^2}$
 $= 50 \frac{m^3}{min} \cdot \frac{25}{9\pi} \cdot \frac{1}{25m^2}$
 $= \frac{50}{9\pi} \frac{m}{min} \approx 1.77 \frac{m}{min}$

The height is induced of a rate of
$$\frac{50}{4\pi}$$
 min when the height is $5m$.

Example

Pedestrians A and B are walking on straight streets that meet at right angles. A approaches the intersection at 2m/sec, and B moves away from the intersection at 1m/sec. At what rate is the angle θ changing when A is 10m from the intersection and B is 20 m from the intersection?

Q:
$$\frac{d\theta}{dt} = 7$$
 when $d = 10n$ and $\beta = 20n$
From the diagram $\tan \theta = \frac{\alpha'}{\beta}$
Take $\frac{d}{dt} = \frac{d\theta}{\beta}$ both sides
 $Se_{c}^{2}\theta = \frac{d\theta}{dt} = \frac{\frac{d\alpha}{\beta}}{\beta^{2}} = \frac{\frac{d\beta}{dt}}{\beta^{2}}$
 $\frac{d\theta}{dt} = \frac{\frac{d\alpha}{dt}\beta - \frac{d\beta}{dt}\alpha'}{\beta^{2} - \frac{d\beta}{dt}\alpha'}$
 $\frac{d\theta}{dt} = \frac{\frac{d\alpha}{dt}\beta - \frac{d\beta}{dt}\alpha'}{\beta^{2} - \frac{d\beta}{dt}\alpha'}$
 $Se_{c}\theta = \frac{10\sqrt{3}}{70}$

September 16, 2014 7 / 16

୬ବଙ

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

When
$$\chi = 10 \text{ m}$$
 and $\beta = 20 \text{ m}$
 $\frac{d\theta}{dt} = -2 \frac{m}{\text{sec}} \cdot 20 \text{ m} - 1 \frac{m}{\text{sec}} \cdot 10 \text{ m}}{(20 \text{ m})^2 (\frac{15}{2})^2} = \frac{-50 \frac{m^2}{\text{sec}}}{500 \text{ m}^2}$
 $\frac{d\theta}{dt} = -\frac{1}{10} \frac{1}{\text{sec}}$

September 16, 2014 8 / 16

<ロ > < 部 > < 書 > く 書 > 差 多 名 (~) September 16, 2014 9 / 16

Your Turn

The sides of an equilateral triangle are increasing at a constant rate of 2 cm/min.

September 16, 2014

10/16

Determine the rate at which the area is increasing when (a) the sides are 6 cm long (b) the area is $8\sqrt{3}$ cm²