Example
A reservoir in the shape of an inverted right circular cone has height 10 m and base radius 6 m . If water is flowing into the reservoir at a constant rate of $50 \mathrm{~m}^{3} / \mathrm{min}$. What is the rate at which the height of the water is increasing when the height is 5 m ?
hut r and h be the radius and height of the water, respectively.
If the volume of wate is V, then

$$
V=\frac{\pi}{3} r^{2} h
$$

Given: $\frac{d V}{d t}=50 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$

Rates: $\frac{d r}{d t}, \frac{d h}{d t}$ $\frac{d V}{d t}$

Q: $\frac{d h}{d t}=$? when $h=5 \mathrm{~m}$
Cross section

By simile triangles

$$
\frac{r}{n}=\frac{6}{10} \Rightarrow r=\frac{3}{5} h
$$

So $V=\frac{\pi}{3}\left(\frac{3}{5} h\right)^{2} h \Rightarrow V=\frac{3 \pi}{25} h^{3}$

Take $\frac{d}{d t}$ of both sides:

$$
\frac{d v}{d t}=\frac{3 \pi}{25}\left(3 h^{2}\right) \frac{d h}{d t}
$$

$$
\frac{d V}{d t}=\frac{9 \pi}{2 s} h^{2} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{d V}{d t}\left(\frac{2 s}{9 \pi}\right) \frac{1}{h^{2}}
$$

when $h=5 m$

$$
\begin{aligned}
\frac{d h}{d t} & =\left(50 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}\right)\left(\frac{25}{9 \pi}\right) \frac{1}{(5 \mathrm{~m})^{2}} \\
& =50 \frac{\mathrm{~m}^{3}}{\min } \cdot \frac{25}{9 \pi} \cdot \frac{1}{25 \mathrm{~min}^{2}} \\
& =\frac{50}{9 \pi} \frac{\mathrm{~m}}{\mathrm{~min}} \approx 1.77 \frac{\mathrm{~m}}{\mathrm{~min}}
\end{aligned}
$$

The height is increasing at a rate of $\frac{50}{9 \pi} \frac{\mathrm{~m}}{\mathrm{~min}}$ when the height is 5 m .

Example
Pedestrians A and B are walking on straight streets that meet at right angles. A approaches the intersection at $2 \mathrm{~m} / \mathrm{sec}$, and B moves away from the intersection at $1 \mathrm{~m} / \mathrm{sec}$. At what rate is the angle θ changing when A is 10 m from the intersection and B is 20 m from the intersection?

Rates:
$\frac{d \alpha}{d t}, \frac{d \beta}{d t}$,

$$
\frac{d \theta}{d t}
$$

Let α and β be the distances of persons A and B, respectively, from the intersection.

B

Q: $\frac{d \theta}{d t}=? \quad$ when $\alpha=10 \mathrm{~m}$ and $\beta=20 \mathrm{~m}$
From the diagram $\tan \theta=\frac{\alpha}{\beta}$
Take $\frac{d}{d t}$ of both sides

$$
\frac{d \theta}{d t}=\frac{\frac{d \alpha}{d t} \beta-\frac{d \beta}{d t} \alpha}{\beta^{2} \sec ^{2} \theta}
$$

when $\alpha=10 \quad \beta=20$

When $\alpha=10 \mathrm{~m}$ and $\beta=20 \mathrm{~m}$

$$
\begin{gathered}
\frac{d \theta}{d t}=\frac{-2 \frac{m}{\sec \cdot 20 m-1 \frac{m}{\sec } \cdot 10 \mathrm{n}}(20 \mathrm{~m})^{2}\left(\frac{\sqrt{s}}{2}\right)^{2}}{\left(50 \frac{\mathrm{~m}^{2}}{\mathrm{sec}}\right.} \frac{-50 \mathrm{~m}^{2}}{\frac{d \theta}{d t}=\frac{-1}{10} \frac{1}{\mathrm{sec}}}
\end{gathered}
$$

θ is decreasing at a rate of $\frac{1}{10}$ radians pen second.

Your Turn

The sides of an equilateral triangle are increasing at a constant rate of $2 \mathrm{~cm} / \mathrm{min}$.

equilateral triangle

Determine the rate at which the area is increasing when
(a) the sides are 6 cm long
(b) the area is $8 \sqrt{3} \mathrm{~cm}^{2}$

