## Sept 18 Math 2253H sec. 05H Fall 2014

## Section 2.8 Related Rates

The sides of an equilateral triangle are increasing at a constant rate of $2 \mathrm{~cm} / \mathrm{min}$.


Determine the rate at which the area is increasing when
(a) the sides are 6 cm long
(b) the area is $8 \sqrt{3} \mathrm{~cm}^{2}$

$$
\begin{array}{rlrl}
A=\frac{1}{2} s h & =\frac{1}{2} s \frac{\sqrt{3}}{2} s & h^{2}=s^{2}-\frac{s^{2}}{4} \Rightarrow \\
\Downarrow & h=\frac{\sqrt{3}}{2} s
\end{array} \underbrace{\frac{s}{2}}_{h} s
$$

So $\frac{d A}{d t}=\frac{2 \sqrt{3}}{4} s \frac{d s}{d t} \Rightarrow \frac{d A}{d t}=\frac{\sqrt{3}}{2} s \frac{d s}{d t}$
a) when $S^{\prime}=6 \mathrm{~cm}$
b) when $A=8 \sqrt{3}$

$$
\begin{gathered}
\frac{d A}{d t}=\frac{\sqrt{3}}{2}(6 \mathrm{~cm})\left(2 \frac{\mathrm{~cm}}{\mathrm{~min}}\right) \\
\frac{d A}{d t}=6 \sqrt{3} \frac{\mathrm{~cm}^{2}}{\mathrm{~min}}
\end{gathered}
$$

$$
\begin{gathered}
S^{2}=8 \sqrt{3} \cdot \frac{4}{\sqrt{3}}=32 \\
S=\sqrt{32} \\
\text { So } \frac{d A}{d t}=\sqrt{32} \sqrt{3} \frac{\mathrm{~cm}^{2}}{\mathrm{~min}}
\end{gathered}
$$

## Section 2.9: Using the tangent line (Linearization)

Suppose we have a function $y=f(x)$ whose graph passes through the point $(a, f(a))$ and that is differentiable at $x=a$.

Consider the following line

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Note $L(x)=m x+b$ where $m=f^{\prime}(a)$ and $b=f(a)-a f^{\prime}(a)$.
Note $L(x)=f^{\prime}(a) x+\underbrace{f(a)-a f(a)}_{\lambda})$
$m$

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Example: Find $L(x)$ for $f(x)=\sqrt{x}$ and $a=9$.

$$
\begin{array}{cl}
f(x)=x^{1 / 2} & f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \\
f(9)=\sqrt{9}=3 & f^{\prime}(9)=\frac{1}{2 \sqrt{9}}=\frac{1}{2 \cdot 3}=\frac{1}{6} \\
L(x)=3+\frac{1}{6}(x-9)
\end{array}
$$



Figure: $x \approx 9, L(x) \approx f(x)$

## Example Continued...

Show that $L(9)=f(9)$ and that $L^{\prime}(9)=f^{\prime}(9)$.

$$
\begin{array}{ll}
L(9)=3+\frac{1}{6}(9-9)=3 & f(9)=3 \\
L^{\prime}(x)=\frac{1}{6} \Rightarrow L^{\prime}(9)=\frac{1}{6} \quad \text { and } f^{\prime}(9)=\frac{1}{6}
\end{array}
$$

Note: $L(9.1)=3+\frac{1}{6}(9.1-9)=3+\frac{1}{6}\left(\frac{1}{10}\right)=\frac{180}{60}+\frac{1}{60}=\frac{181}{60}$.
$\sqrt{9.1}=3.0166206 \quad$ (by TI-89) $\quad L(9.1)=3.0166666 \quad$ (by hand)
5 accurate digits!

## Application Example

Example: Approximate $\sqrt[4]{17}$ using a line.

