Sept 19 Math 2253H sec. 05H Fall 2014
Section 2.9: Using the tangent line (Linearization)
Example: Approximate $\sqrt[4]{17}$ using a line.
We need a function $f$ and a runke $a$.
Let $f(x)=\sqrt[4]{x}=x^{1 / 4}$ and $a=16$

So 16 is "close" to 17 and it's "nice" as a perfect $4^{\text {th }}$ power.

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{4} x^{-3 / 4} \Longrightarrow f^{\prime}(x)=\frac{1}{4(\sqrt[4]{x})^{3}} \\
& f(16)=\sqrt[4]{16}=2 \quad f^{\prime}(16)=\frac{1}{4(\sqrt[4]{16})^{3}}=\frac{1}{4 \cdot 2^{3}}=\frac{1}{32} \\
& L(x)=2+\frac{1}{32}(x-16)
\end{aligned}
$$

for $x \approx 16 \quad L(x) \approx \sqrt[4]{x}$

$$
\begin{aligned}
\sqrt[4]{17} & \approx L(17)
\end{aligned}=2+\frac{1}{32}(17-16)=2+\frac{1}{32}=\frac{64}{32}+\frac{1}{32}
$$

$$
\begin{aligned}
\text { TI.89 } \quad \sqrt[4]{17} & \approx 2.0305 \\
\frac{65}{32} & =2.03125
\end{aligned}
$$

## Chapter 3: Applications of Differentiation

Section 3.1: Maximums and Minimums

Definition: Let $f$ be a function with domain $D$ and let $c$ be a number in $D$. Then $f(c)$ is

- the absolute minimum value of $f$ on $D$ if $f(c) \leq f(x)$ for all $x$ in $D$,
- the absolute maximum value of $f$ on $D$ if $f(c) \geq f(x)$ for all $x$ in $D$.

$34=f(-3.4)$
$f$ has no

absolute minimum value.

Figure: Graphically, an absolute minimum is the lowest point and an absolute maximum is the highest point.

Definition:

Let $f$ be a function with domain $D$ and let $c$ be a number in $D$. Then $f(c)$ is

$$
\left(\begin{array}{l}
> \\
> \\
>
\end{array}\right.
$$

a local minimum value of $f$ if $f(c) \leq f(x)$ for $x$ near $c$

- a local maximum value of $f$ if $f(c) \geq f(x)$ for $x$ near $c$.
"x rear $C$ "there exists a number $\delta>0$
more
poss
pesty

$$
|x-c|<\delta .
$$



Figure: Graphically, local maxes and mins are relative high and low points.


Figure: Identify local and absolute maxima and minima (if possible).

## Terminology

Maxima--plural of maximum
Minima--plural of minimum
Extremum-is either a maximum or a minimum
Extrema-plural of extremum
"Global" is another word for absolute.
"Relative" is another word for local.

Extreme Value Theorem
Suppose $f$ is continuous on a closed interval $[a, b]$. Then $f$ attains an absolute maximum value $f(c)$ and $f$ attains an absolute minimum value $f(d)$ for some numbers $c$ and $d$ in $[a, b]$.




Fermat's Theorem
If $f$ has a local extremum at $c$ and if $f^{\prime}(c)$ exists, then

$$
f^{\prime}(c)=0 .
$$





Question:
Suppose a function $f$ satisfies $f^{\prime}(0)=0$. Can we conclude that $f(0)$ is a local maximum or local minimum?

No. Consider $f(x)=x^{3}$ so $f^{\prime}(x)=3 x^{2}$ and $f^{\prime}(0)=0$


Question:
Could $f(c)$ be a local extremum but have $f^{\prime}(c)$ not exist?
Yes. Consider $f(x)=|x|$
$f^{\prime}(0)$ DNE


There is a global minimum value of 300 (c) $x=0$.

## Critical Number

Definition: A critical number of a function $f$ is a number $c$ in its domain such that either

$$
f^{\prime}(c)=0 \quad \text { or } \quad f^{\prime}(c) \text { does not exist. }
$$

Theorem:If $f$ has a local extremum at $c$, then $c$ is a critical number of $f$.

Critical numbers are also called critical points.

