Sept 23 Math 2253H sec. 05H Fall 2014

Section 3.1: Maximums and Minimums

Definition: A critical number of a function f is a number c in its domain such that either

$$
f^{\prime}(c)=0 \quad \text { or } \quad f^{\prime}(c) \text { does not exist. }
$$

Theorem:If f has a local extremum at c, then c is a critical number of f.

Critical numbers are also called critical points.

Example
Find all of the critical numbers of the function.
The domain of f is all reals.
(a) $f(x)=x^{4}-2 x^{2}+5$

$$
f^{\prime}(x)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=4 x(x-1)(x+1)
$$

we need to detamine when $f^{\prime}(x)=0$ and when $f^{\prime}(x) D N E$, $f^{\prime}(x)$ is undefined never.

$$
f^{\prime}(x)=0 \text { if } \quad 4 x(x-1)(x+1)=0 \quad \text { ie. } x=0,1 \text {, or }-1 \text {. }
$$

f has 3 critical numbers, 0,1 and -1 .

The domain is all reals.
(b) $g(t)=t^{1 / 5}(12-t)$

$$
\begin{aligned}
& g(t)=12 t^{1 / 5}-t^{6 / 5} \\
& g^{\prime}(t)=12\left(\frac{1}{5}\right) t^{-4 / 5}-\frac{6}{5} t^{1 / 5} \\
&=\frac{12}{5 t^{4 / 5}}-\frac{6 t^{1 / 5}}{5} \cdot \frac{t^{4 / 5}}{t^{4 / 5}} \\
&=\frac{12}{5 t^{4 / 5}}-\frac{6 t}{5 t^{4 / 5}} \\
& \Rightarrow \quad g^{\prime}(t)=\frac{12-6 t}{5 t^{4 / 5}}
\end{aligned}
$$

Simplify to get one fraction

$$
\begin{aligned}
& g^{\prime}(t)=0 \quad \Rightarrow \quad 12-6 t=0 \quad \Rightarrow \quad t=2 \\
& g^{\prime}(t) \text { DNE } \quad \Rightarrow \quad 5 t^{4 / s}=0 \quad \Rightarrow \quad t=0
\end{aligned}
$$

g has two criticel nunber, 0 ond 2 .

The domain is $\{x \mid x \neq 0\}$.
(c) $\quad h(x)=x+\frac{1}{x}$

$$
\begin{aligned}
& h(x)=x+x^{-1} \\
& h^{\prime}(x)=1-x^{-2}=1-\frac{1}{x^{2}}=\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}} \\
& h^{\prime}(x)=\frac{x^{2}-1}{x^{2}}
\end{aligned}
$$

$$
h^{\prime}(x)=0 \Rightarrow x^{2}-1=0 \Rightarrow x=1 \text { or } x=-1
$$

$h^{\prime}(x)$ DNE $\Rightarrow x^{2}=0 \Rightarrow x=0$ this is not in the domain
h has two critical numbers, 1 and -1 .

Example
Find the absolute maximum and absolute minimum values of the function on the closed interval.
fir continuous on $[0,4]$
(a) $f(x)=1+27 x-x^{3}$, on $[0,4]$ and $[0,4]$ is closed. The EVT applies.
The extreme occur at on end point or somewhen in between.
If it occurs inside, it dues so at a critical number.

Find criticd no: $f^{\prime}(x)=27-3 x^{2}=3\left(9-x^{2}\right)$
$f^{\prime}(x)$ DNE never, $f^{\prime}(x)=0 \Rightarrow x=3$ or $x=-3$.
f has one critied no. inside $[0,4]$, nomel, 3 .

Compare f at the end points and the critical numbers:

$$
\begin{aligned}
& f(0)=1+27 \cdot 0-0^{3}=1 \\
& f(3)=1+27 \cdot 3-3^{3}=55 \epsilon^{\text {minimum }} \\
& f(4)=1+27 \cdot 4-4^{3}=45
\end{aligned}
$$

The absolute minimum value of f on $[0,4]$ is $1=f(0)$. The absolute maximum value of f on $[0,4]$ is $55=f(3)$.
g is continuous
(b) $g(t)=t^{1 / 5}(12-t)$, on $[-1,1]$
$+[-1,1]$ is
closed. The EVT applies.
From before, g has one
critical number inside $[-1,1], 0$.

Compare g at the ends and the critical number:

$$
\begin{aligned}
& g(-1)=(-1)^{1 / 3}(12-(-1))=-13 \\
& g(0)=(0)^{1 / 5}(12-0)=0 \\
& g(1)=(1)^{1 / 5}(12-1)=11
\end{aligned}
$$

The absolute maximum value of g on $[-1,1]$

$$
\text { is } \quad \|=g(1) \text {. }
$$

The absolute minimum value of g on $[-1,1]$ is $\quad-13=g(-1)$.

The EVT holds.
(c) $f(x)=\cos x-\frac{x}{2}$, on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$f^{\prime}(x)=-\sin x-\frac{1}{2} \quad f^{\prime}(x)$ DNE never

$$
f^{\prime}(x)=0 \Rightarrow-\sin x-\frac{1}{2}=0 \Rightarrow \sin x=\frac{-1}{2}
$$

Them is one critical number in $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$
x=-\frac{\pi}{6}
$$

Compare f at the ends and critical no.

$$
\begin{aligned}
& f\left(-\frac{\pi}{2}\right)=\cos \left(-\frac{\pi}{2}\right)-\frac{-\pi / 2}{2}=\frac{\pi}{4} \\
& f\left(-\frac{\pi}{6}\right)=\cos \left(-\frac{\pi}{6}\right)-\frac{-\pi / 6}{2}=\frac{\sqrt{3}}{2}+\frac{\pi}{12} \leftarrow^{\text {maximin }} \\
& f\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)-\frac{\pi / 2}{2}=\frac{-\pi}{4} \leftarrow^{\text {minima }^{m i n n}}
\end{aligned}
$$

The absolute max of f or $[-\pi / 2, \pi / 2]$ is

$$
f\left(-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}+\frac{\pi}{2} .
$$

The absolute min of f on $[-\pi / 2, \pi / 2)$
is $\quad f\left(\frac{\pi}{2}\right)=-\frac{\pi}{4}$.

