Sept 29 Math 2253H sec. 05H Fall 2014

Section 3.2: The Mean Value Theorem

Rolle's Theorem: Let f be a function that is
i continuous on the closed interval $[a, b]$,
ii differentiable on the open interval (a, b), and
iii such that $f(a)=f(b)$.
Then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

here every x in (a, b) con be ow r C.

what happen-w when en-ginerer froget rolle'r theorem

Example
Show that the function $f(\theta)=\cos \theta+\sin \theta$ has at least one point c in $\left[0, \frac{\pi}{2}\right]$ such that $f^{\prime}(c)=0$.
$f(\theta)$ is continuous @ all reals, so it is on $\left[0, \frac{\pi}{2}\right]$.
$f^{\prime}(\theta)=-\sin \theta+\cos \theta$ is wall defined everywhere. So
f is differentiable on $\left(0, \frac{\pi}{2}\right)$.

$$
\left.\begin{array}{l}
f(0)=\cos (0)+\sin (0)=1+0=1 \\
f\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)+\sin \left(\frac{\pi}{2}\right)=0+1=1
\end{array}\right\} \Rightarrow f(0)=f\left(\frac{\pi}{2}\right)
$$

By Roll's theorem, there must be some c in $(0, \pi / 2)$ such that $f^{\prime}(c)=0$.

Figure

Example
Show that the polynomial $f(x)=x^{3}+x-1$ has exactly one real root.
Note that $f(0)=-1$ and $f(1)=1+1-1=1$.
Since f is a polynomial, hence continuous, The intermediate value theorem guarantees that $f(c)=0$ for some c between 0 and 1. ie. f has at least one real root.

To shows it has exactly one red root, let's suppose it has 2 roots - one at x_{1}
and arothen at x_{2} (assume $x_{1}<x_{2}$).
Note f is continuous on the interval $\left[x_{1}, x_{2}\right]$.
As a polynomid, f is differentioble on $\left(x_{1}, x_{2}\right)$.
More over, $f\left(x_{1}\right)=0=f\left(x_{2}\right)$
By Rule's theorem, then exist c between x_{1} and x_{2} such that $f^{\prime}(c)=0$.

Now, $\quad f^{\prime}(x)=3 x^{2}+1 \quad$ so $\quad f^{\prime}(c)=3 c^{2}+1$
giving

$$
3 c^{2}+1=0 \Rightarrow c^{2}=\frac{-1}{3}
$$

which cont be for any real C.
The assumption $f\left(x_{1}\right)=f\left(x_{2}\right)=0$ must be false.
That is, f has at most one root.

Plot:

Figure: $y=x^{3}+x-1$

The Mean Value Theorem

Suppose f is a function that satisfies
i f is continuous on the closed interval $[a, b]$, and
ii f is differentiable on the open interval (a, b).
Then there exists a number c in (a, b) such that

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text {, equivalently } f(b)-f(a)=f^{\prime}(c)(b-a) . \\
& \frac{f(b)-f(a)}{b-a} \quad \frac{\Delta y}{\Delta x} \text { between end points Stunts of the secant line }
\end{aligned}
$$

(a $(c, f(c))$ the tangent line is parallel to the secant line.

Figure

Figure

Figure: Celebration of the MVT in Beijing.

Example
Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all values of c that satisfy the conclusion of the MVT.

$$
f(x)=x^{3}-2 x, \quad[-2,2]
$$

As a polynomide, f is continuous and differentiable every where. So
i) f is continuous on $[-2,2]$ and
ii) f is differentiable on $(-2,2)$.

$$
f(2)=2^{3}-2 \cdot 2=8-4=4, \quad f(-2)=(-2)^{3}-2(-2)=-8+4=-4
$$

$$
\begin{aligned}
& \text { So } \quad \frac{f(b)-f(a)}{b-a}=\frac{f(2)-f(-2)}{2-(-2)}=\frac{4+4}{4}=2 \\
& f^{\prime}(x)=3 x^{2}-2 \Rightarrow f^{\prime}(c)=3 c^{2}-2
\end{aligned}
$$

Set $f^{\prime}(c)$ to $\frac{f(b)-f(a)}{b-a}$

$$
3 c^{2}-2=2 \quad \Rightarrow \quad 3 c^{2}=4 \quad \Rightarrow \quad c^{2}=\frac{4}{3}
$$

$c=\frac{ \pm 2}{\sqrt{3}}$ both are between -2 and 2
So both c-values satisfy the conclusion of the MVT.

