Sept 29 Math 2253H sec. 05H Fall 2014

Section 3.2: The Mean Value Theorem

Rolle's Theorem: Let f be a function that is

- i continuous on the closed interval [a, b],
- ii differentiable on the open interval (a, b), and
- iii such that f(a) = f(b).

Then there exists a number *c* in (a, b) such that f'(c) = 0.

what happenr when engineerr rorget rolleir theorem

Example

Show that the function $f(\theta) = \cos \theta + \sin \theta$ has at least one point *c* in $\left[0, \frac{\pi}{2}\right]$ such that f'(c) = 0.

$$f(\theta) \text{ is continuous } \theta \text{ cll reals, so it is on } \left[0, \frac{\pi}{2}\right]$$

$$f'(\theta) = -\sin \theta + (\cos \theta \text{ is well defined everywhere. So}$$

$$f \text{ is differentiable on } (0, \frac{\pi}{2}).$$

$$f(0) = \cos(0) + \sin(0) = 1 + 0 = 1 \quad \text{f}(0) = f(\frac{\pi}{2})$$

$$f(\frac{\pi}{2}) = \cos(\frac{\pi}{2}) + \sin(\frac{\pi}{2}) = 0 + 1 = 1$$

$$B_{2} \text{ Rolle's theorem, there must be some cin } (0, \frac{\pi}{2})$$

$$\text{ such that } f'(c) = 0.$$

イロト イヨト イヨト イヨト

Figure

æ

<ロ> (日) (日) (日) (日) (日)

Example

Show that the polynomial $f(x) = x^3 + x - 1$ has exactly one real root.

Note that
$$f(0) = -1$$
 and $f(1) = 1+1-1 = 1$.
Since fis a polynomial, hence continuous. The
intermediate value theorem guarantees that $f(c) = 0$
for some c between 0 and 1. i.e. f has
at least one real root.

Suppose it has a roots - one at X, イロン イロン イヨン イヨン 三日 7/24 September 23, 2014

and another at
$$X_2$$
 (assume $X_1 < X_2$).
Note f is continuous on the interval $[X_1, X_2]$.
As a polynomial, f is differentiable on $(X_{1,1}, X_2)$.
Moreover, $f(X_1) = 0 = f(X_2)$
By Polle's theorem, there exist c between
 X_1 and X_2 such that $f'(c) = 0$.
Now, $f'(x) = 3x^2 + 1$ so $f'(c) = 3c^2 + 1$
 0
September 23,2014 8/24

giving

$$3c^2+1=0 \Rightarrow c^2=\frac{1}{3}$$

which can't be for any real c.
The assumption $f(x_1) = f(x_2) = 0$ must be
false.
That is, f has at most one root.

・ロン ・御と ・ヨン ・ヨン 三日

Figure: $y = x^3 + x - 1$

2

()

The Mean Value Theorem

Suppose *f* is a function that satisfies

- i f is continuous on the closed interval [a, b], and
- ii f is differentiable on the open interval (a, b).

Then there exists a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}, \quad \text{equivalently} \quad f(b) - f(a) = f'(c)(b - a).$$

$$\frac{f(b) - f(a)}{b - a} \quad \frac{\Delta y}{\Delta x} \quad \text{between end points} \quad \text{Slope of the} \\ \text{Secant line} \quad \text{Secant line} \quad \text{Sources and points} \quad \text$$

September 23, 2014 12 / 24

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Figure

୬ବଙ

・ロン ・御と ・ヨン ・ヨン 三日

Figure

2

ヘロト ヘロト ヘヨト ヘヨト

Figure: Celebration of the MVT in Beijing.

イロト イヨト イヨト イヨト

Example

Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all values of *c* that satisfy the conclusion of the MVT.

$$f(x) = x^3 - 2x, \quad [-2,2]$$

As a polynomial, f is continuous and differentiable
every where. So
i) f is continuous on [-2,2] and
ii) f is differentiable on (-2,2).
$$f(z) = 2^3 - 2 \cdot 2 = 8 - 4 = 4, \quad f(-z) = (-2)^3 - 2(-z) = -8 + 4 = -4$$

< ロ > < 同 > < 回 > < 回 >

So
$$f(\frac{b}{-a}) = f(\frac{a}{-a}) = \frac{f(2) - f(-2)}{2 - (-2)} = \frac{4 + 4}{4} = 2$$

$$f'(x) = 3x^2 - 2 \implies f'(c) = 3c^2 - 2$$

Set $f'(c) \Rightarrow \frac{f(b) - f(a)}{b - a}$

$$3c^2-2=2 \Rightarrow 3c^2=4 \Rightarrow c^2=\frac{4}{3}$$

$$C = \frac{\pm 2}{\sqrt{3}}$$
 both are between -2 and 2