Sept 2 Math 2253H sec. 05H Fall 2014

Section 2.1: Derivatives and Rates of Change

Definition: The tangent line to the curve y = f(x) at the point
P(a, f(a)) is the line through P with slope
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Example:

Find the equation of the line tangent to the graph of f at the indicated
point.
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Example lllustrated

Figure: Note that near the point (3, 2), the points on the line are very close to
the points on the curve.
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Velocities

Suppose s = f(t) represents the position of particle moving along a
straight line (e.g. the x-axis). Consider a time interval between t = a

andt=a+ h.
displacement (position change) = f(a+ h) — f(a) = As

time change =a+ h—a=h= At
fla+h)—f(a) _As

average velocity = b N,

The velocity (instantaneous velocity) of the particle attime t = ais
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Rate of Change of a Function
If y = f(x), then the rate of change' of y with respect to x at x = x;

is
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This is also called the derivative of y with respectto x at x = aand is
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denoted by
f'(a). (Read "fprime of a”.)

'a.k.a. instantaneous rate of change
August 28, 2014 5/24

()



Example

Ex. Each limit repesents the derivative of some function f at some
number a. Identify such a function and such a number.
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Section 2.2: The Derivative as a Function

If f(x) is a function, then the set of numbers f'(a) for various values of
a should define a new function.
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Let f(x) be a function. Define the new function
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called the derivative of f. The domain of this new function is the set
{x|xis in the domain of f, and f’(x) exists}.
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Example

Identify the domain of f. Determine f'(x) and identify the domain of f'.
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Example Continued...

Use the results to find the equation of the line tangent to the graph of

y = 2/x at the point (2, 1).
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Example

Find all points on the graph of y = 2/x at which the rate of change of y
with respect to x is —4. Are there any points at which the rate of
change of y with respect to x is 17
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How are the functions f(x) and f'(x) related?
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How are the functions f(x) and f'(x) related?
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Remarks:

» if f(x) is a function of x, then f'(x) is a new function of x (called
the derivative of f)

» The number f'(a) (if it exists) is the slope of the curve of y = f(x)
at the point (a, f(a))

» this is also the slope of the tangent line to the curve of y at
(a,f(a))

» “slope of the curve”, "slope of the tangent line”, and "rate of
change” are the same concept

Definition: A function f is said to be differentiable at a if f'(a) exists. It
is called differentiable on an open interval / if it is differentiable at each
pointin /.
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