Sept 2 Math 2253H sec. 05H Fall 2014
Section 2.1: Derivatives and Rates of Change
Definition: The tangent line to the curve $y=f(x)$ at the point $P(a, f(a))$ is the line through P with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided this limit exists.
If the limit doesn't exist, the graph has no tongut line C $(a, f(a))$.

When in exists, the tangent line has equation

$$
y=m(x-a)+f(a)
$$

Example:
Find the equation of the line tangent to the graph of f at the indicated point.
$f(x)=\sqrt{x+1}$ at $(3,2)$
Find the slope m $m=\frac{1}{4}$ the point is $(3,2)$ the firm is

$$
y-2=\frac{1}{4}(x-3),
$$

$$
\begin{aligned}
m & =\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\sqrt{x+1}-2}{x-3} \cdot \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 3} \frac{x+1-4}{(x-3)(\sqrt{x+1}+2)}
$$

$$
=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(\sqrt{x+1}+2)}
$$

$$
=\lim _{x \rightarrow 3} \frac{1}{\sqrt{x+1}+2}=\frac{1}{4}
$$

Example Illustrated

Figure: Note that near the point $(3,2)$, the points on the line are very close to the points on the curve.

Velocities

Suppose $s=f(t)$ represents the position of particle moving along a straight line (e.g. the x-axis). Consider a time interval between $t=a$ and $t=a+h$.

$$
\text { displacement (position change) }=f(a+h)-f(a)=\Delta s
$$

$$
\begin{gathered}
\text { time change }=a+h-a=h=\Delta t \\
\text { average velocity }=\frac{f(a+h)-f(a)}{h}=\frac{\Delta s}{\Delta t}
\end{gathered}
$$

The velocity (instantaneous velocity) of the particle at time $t=a$ is

$$
v(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}
$$

Rate of Change of a Function

 If $y=f(x)$, then the rate of change ${ }^{1}$ of y with respect to x at $x=x_{1}$ is$$
\begin{aligned}
& \text { rate of change }=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\
& \text { If } \\
& x=x_{1}+h \\
& \Rightarrow h=x-x_{1} \\
& x \rightarrow x_{1} \Rightarrow h \rightarrow 0
\end{aligned} \quad \begin{cases}x \rightarrow x_{1} & \frac{f(x)-f\left(x_{1}\right)}{x-x_{1}} \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}\end{cases}
$$

This is also called the derivative of y with respect to x at $x=a$ and is denoted by

$$
f^{\prime}(a) . \quad \text { (Read "f prime of a".) for } a=\chi_{1}
$$

[^0]Example
Ex. Each limit repesents the derivative of some function f at some number a. Identify such a function and such a number.
(a) $\lim _{h \rightarrow 0} \frac{\sqrt[4]{16+h}-2}{h} \quad \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$

Need $f(a+h)=\sqrt[4]{16+h} \Rightarrow a+h=16+h$

$$
a=16
$$

$$
\begin{gathered}
f(x)=\sqrt[4]{x} \\
f(a)=f(16)=\sqrt[4]{16}=2
\end{gathered}
$$

$$
\begin{aligned}
& \text { so } \\
& \begin{array}{c}
f(x)=\sqrt[4]{x} \text { and } \\
a=16
\end{array}
\end{aligned}
$$

(b) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan x-1}{x-\frac{\pi}{4}}$

Motch to

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

$a=\frac{\pi}{4}$

$$
f(x)=\tan x
$$

$$
f(a)=f\left(\frac{\pi}{4}\right)=\tan \left(\frac{\pi}{4}\right)=1
$$

So $f(x)=\tan x$ and $a=\frac{\pi}{4}$.

Section 2.2: The Derivative as a Function

If $f(x)$ is a function, then the set of numbers $f^{\prime}(a)$ for various values of a should define a new function.

Let $f(x)$ be a function. Define the new function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

called the derivative of f. The domain of this new function is the set $\left\{x \mid x\right.$ is in the domain of f, and $f^{\prime}(x)$ exists $\}$.

Example
Identify the domain of f. Determine $f^{\prime}(x)$ and identify the domain of f^{\prime}. $f(x)=\frac{2}{x} \quad$ Domain of f is $\{x \mid x \neq 0\}$,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{x+h}-\frac{2}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x}{\frac{x(x+h)}{h}-\frac{2(x+h)}{x(x+h)}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{2 x-2(x+h)}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{2 x-2 x-2 h}{h x(x+h)}=\lim _{h \rightarrow 0} \frac{-2 h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-2}{x(x+h)}=\frac{-2}{x(x+0)}=\frac{-2}{x^{2}} \\
& \left.f^{\prime}(x)=\frac{-2}{x^{2}} w \right\rvert\, \text { dumain }\{x \mid x \neq 0\}
\end{aligned}
$$

Example Continued...
Use the results to find the equation of the line tangent to the graph of $y=2 / x$ at the point $(2,1)$.

The tangent lime has slope $m=f^{\prime}(2)$.
From the last example $f^{\prime}(2)=\frac{-2}{\left(2^{2}\right)}=\frac{-1}{2}$

The line is $y-1=\frac{-1}{2}(x-2)$

$$
y=\frac{-1}{2} x+2
$$

Example
Find all points on the graph of $y=2 / x$ at which the rate of change of y with respect to x is -4 . Are there any points at which the rate of change of y with respect to x is 1 ?

The rate of change of y is $f^{\prime}(x)$.
Set $f^{\prime}(x)$ equal to -4 :

$$
\frac{-2}{x^{2}}=-4 \Rightarrow x^{2}=\frac{1}{2} \Rightarrow x=\frac{1}{\sqrt{2}} \text { or } x=\frac{-1}{\sqrt{2}}
$$

Get y-values : $\frac{2}{1 / \sqrt{2}}=2 \sqrt{2}, \frac{2}{-1 / \sqrt{2}}=-2 \sqrt{2}$

There are two points at which the rate of chang of y is -4

$$
\left(\frac{1}{\sqrt{2}}, 2 \sqrt{2}\right) \text { and }\left(-\frac{1}{\sqrt{2}},-2 \sqrt{2}\right) \text {. }
$$

Set $f^{\prime}(x)$ to 1 :

$$
\frac{-2}{x^{2}}=1 \Rightarrow-2=x^{2}
$$

These one no red number solutions.

How are the functions $f(x)$ and $f^{\prime}(x)$ related?

How are the functions $f(x)$ and $f^{\prime}(x)$ related?

Remarks:

- if $f(x)$ is a function of x, then $f^{\prime}(x)$ is a new function of x (called the derivative of f)
- The number $f^{\prime}(a)$ (if it exists) is the slope of the curve of $y=f(x)$ at the point $(a, f(a))$
- this is also the slope of the tangent line to the curve of y at ($a, f(a))$
- "slope of the curve", "slope of the tangent line", and "rate of change" are the same concept

Definition: A function f is said to be differentiable at a if $f^{\prime}(a)$ exists. It is called differentiable on an open interval $/$ if it is differentiable at each point in I.

[^0]: ${ }^{1}$ a.k.a. instantaneous rate of change

