Sept 30 Math 2253H sec. 05H Fall 2014

Section 3.2: The Mean Value Theorem

Suppose *f* is a function that satisfies

- i f is continuous on the closed interval [a, b], and
- ii f is differentiable on the open interval (a, b).

Then there exists a number c in (a, b) such that

$$f'(c) = rac{f(b) - f(a)}{b - a}$$
, equivalently $f(b) - f(a) = f'(c)(b - a)$.

That is, for some *c* in the interval, the tangent line at (c, f(c)) is parallel to the secant line through the points (a, f(a)) and (b, f(b)).

Example

Let *f* be a function that is differentiable for all real *x*. Suppose f(0) = 3 and $f'(x) \le 2$ for all $0 \le x \le 10$. What is the maximum possible value of f(10)?

fis continuous on [0,10]
fis differentiable on (0,10)
By the MVT, there exists c in (0,10) such that

$$f'(c) = \frac{f(10) - f(0)}{10 - 0}$$

 $f'(c) = \frac{f(10) - 3}{10} \implies f(10) - 3 = 10 f'(c)$

Important Consequence of the MVT

Theorem: If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

Corollary: If f'(x) = g'(x) for all x in an interval (a, b), then f - g is constant on (a, b). In other words,

f(x) = g(x) + C where C is some constant.

イロト イポト イヨト イヨト 二日

Suppose
$$f'(x) = 0$$
 for x in (a,b) . Let
 $a < x_1 < x_2 < b$. fis continuous on $[X_1, X_2]$
and differentiable on (X_1, X_2) . By the
MNT there exists c in (x_1, x_2) such
that
 $f(x_2) - f(x_1) = f'(c_1)(x_2 - x_1)$
 $f(x_2) - f(x_1) = 0 \Rightarrow$
 $\Rightarrow f(x_2) = f(x_1)$
But X_2 and X_1 can be only numbers in (a_1b) .
That is, " $f(x) =$ some number" for all x in (a_1b) .

Examples

Find all possible functions f(x) that satisfy the condition

(a)
$$f'(x) = \cos x$$
 on $(-\infty, \infty)$
Recall $\frac{d}{dx}$ Sinx = Cosx

$$S_{0}$$
 f(x) = $S_{1}^{n}x + C$

September 29, 2014 6 / 41

э

イロト イヨト イヨト イヨト

(b) f'(x) = 2x on $(-\infty, \infty)$ $\frac{d}{dx} = 2x$ $f(x) = x^2 + C$ So for arbitrary constant C

()

Find all possible functions h(t) that satisfy the condition

()

(c)
$$h'(t) = \sec^2 t$$
 on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
 $\frac{d}{dt}$ tent = $\sec^2 t$
So $h(t) = tent + C$
for arbitrary constant C

September 29, 2014 8 / 41

2

<ロト <回 > < 回 > < 回 > < 回 >

Section 3.3: Derivatives and the Shapes of Graphs

If *f* is differentiable on a domain, the derivative f' gives information about *f*. f'' also gives information about *f* if it exists.

Theorem: (Increasing/Decreasing test)

- If f'(x) > 0 on an interval, then *f* is increasing on that interval.
- If f'(x) < 0 on an interval, then f is decreasing on that interval.

< ロ > < 同 > < 回 > < 回 >

Example

Determine the intervals on which f is increasing and the intervals on which f is decreasing if f has the following derivative

$$f'(x) = 2(x+3)(x+1)^{2}(x-2)(x-6)$$
To find where $f'(x) > 0$ or $f'(x) < 0$ detunine
where the sign changes
 $f'(x)=0 \implies 0 = 2(x+3)(x+1)^{2}(x-2)(x-6)$
 $\implies x = -3, -1, 2, 6$
Sign $\underbrace{-+++-+++}_{-3} = -4$
of f'_{0} September 29, 2014 10/41

$$f'(-4) \quad (-) (+) (-) (-) , \quad f(-2) \quad (+) (+) (-) (-) ,$$

$$f'(0) \quad (+) (+) (-) (-) , \quad f(3) \quad (+) (+) (+) (-) ,$$

$$f(7) \quad (+) (+) (+) (+)$$

f is increasing on the intervals
$$(-3,-1), (-1,2), and (6,\infty)$$

f is decreasing on the intervals
$$(-\infty, -3)$$
 and (z, b)

Figure: A function f with derivative $f'(x) = 2(x+3)(x+1)^2(x-2)(x-6)$

Theorem: First derivative test for local extrema

Let *f* be continuous and suppose that *c* is a critical number of *f*.

- If f' changes from positive to negative at c, then f has a local maximum at c.
- If f' changes from negative to positive at c, then f has a local minimum at c.
- If f' does not change signs at c, then f does not have a local extremum at c.

Note: we read from left to right as usual when looking for a sign change.

Example

Find all the critical points of the function and classify each one as a local maximum, a local minimum, or neither.

$$s(t) = t^{4} - 8t^{3} + 10t^{2} - 4$$

Crit #: S'(t) = 4t^{3} - 24t^{2} + 20t
S'(t) is never unde fined
s'(t) = 0 = 4t^{3} - 24t^{2} + 20t
= 4t(t^{2} - 6t + 5)
= 4t(t - 1)(t - 5)

< ロ > < 同 > < 回 > < 回 >

