Sept 30 Math 2253H sec. 05H Fall 2014

Section 3.2: The Mean Value Theorem

Suppose f is a function that satisfies
i f is continuous on the closed interval $[a, b]$, and
ii f is differentiable on the open interval (a, b).
Then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, \text { equivalently } f(b)-f(a)=f^{\prime}(c)(b-a)
$$

That is, for some c in the interval, the tangent line at $(c, f(c))$ is parallel to the secant line through the points $(a, f(a))$ and $(b, f(b))$.

Example
Let f be a function that is differentiable for all real x. Suppose $f(0)=3$ and $f^{\prime}(x) \leq 2$ for all $0 \leq x \leq 10$. What is the maximum possible value of $f(10)$?
f is continuous on $[0,10]$
f is differentiable on $(0,10)$
By the MVT, there exists c in $(0,10)$ such that

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(10)-f(0)}{10-0} \\
& f^{\prime}(c)=\frac{f(10)-3}{10} \Rightarrow f(10)-3=10 f^{\prime}(c)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f(10)=10 f^{\prime}(c)+3 \\
& \Rightarrow f(10) \leq 10(2)+3=23
\end{aligned}
$$

So the maximin possible valve of $f(10)$ live of $5^{510 p} 2$ is 23.

Important Consequence of the MVT

Theorem: If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

Corollary: If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b), then $f-g$ is constant on (a, b). In other words,
$f(x)=g(x)+C \quad$ where C is some constant.

Suppose $f^{\prime}(x)=0$ for x in (a, b). Let $a<x_{1}<x_{2}<b$. fir continuous on $\left[x_{1}, x_{2}\right]$ and differentiable on $\left(x_{1}, x_{2}\right)$. By the MVT there exists c in $\left(x_{1}, x_{2}\right)$ such
that

$$
\begin{gathered}
f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right) \\
f\left(x_{2}\right)-f\left(x_{1}\right)=0 \Rightarrow \\
\Rightarrow f\left(x_{2}\right)=f\left(x_{1}\right)
\end{gathered}
$$

But x_{2} and x_{1} con be any numbers in (a, b).
That is, " $f(x)=$ some number" for all x in (a, b).

Examples
Find all possible functions $f(x)$ that satisfy the condition
(a) $f^{\prime}(x)=\cos x$ on $(-\infty, \infty)$

$$
\text { Recall } \frac{d}{d x} \sin x=\cos x
$$

So $\quad f(x)=\sin x+C$
where C is any constant
(b) $f^{\prime}(x)=2 x \quad$ on $\quad(-\infty, \infty)$

$$
\frac{d}{d x} x^{2}=2 x
$$

So

$$
f(x)=x^{2}+C
$$

for arbitrary constant
C

Find all possible functions $h(t)$ that satisfy the condition
(c) $h^{\prime}(t)=\sec ^{2} t \quad$ on $\quad\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\frac{d}{d t} \tan t=\sec ^{2} t
$$

So $\quad h(t)=\tan t+C$ for arbiturans constant C

Section 3.3: Derivatives and the Shapes of Graphs

If f is differentiable on a domain, the derivative f^{\prime} gives information about f. $f^{\prime \prime}$ also gives information about f if it exists.

Theorem: (Increasing/Decreasing test)

- If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
- If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

Example
Determine the intervals on which f is increasing and the intervals on which f is decreasing if f has the following derivative

$$
f^{\prime}(x)=2(x+3)(x+1)^{2}(x-2)(x-6)
$$

To find where $f^{\prime}(x)>0$ or $f^{\prime}(x)<0$ detumine where the sigh changes

$$
\begin{aligned}
& f^{\prime}(-4)(-)(+)(-)(-), f(-2)(+)(+)(-)(-) \\
& f^{\prime}(0)(+)(t)(-)(-), f(3)(+)(t)(+)(-) \\
& f(7)(+)(+)(t)(+)
\end{aligned}
$$

f is increasing on the intervals

$$
(-3,-1),(-1,2) \text {, and }(6, \infty)
$$

f is decreasing on the intervals

$$
(-\infty,-3) \text { and }(2,6)
$$

Figure: A function f with derivative $f^{\prime}(x)=2(x+3)(x+1)^{2}(x-2)(x-6)$

Theorem: First derivative test for local extrema

Let f be continuous and suppose that c is a critical number of f.

- If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
- If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
- If f^{\prime} does not change signs at c, then f does not have a local extremum at c.

Note: we read from left to right as usual when looking for a sign change.

Figure: First derivative test

Example
Find all the critical points of the function and classify each one as a local maximum, a local minimum, or neither.

$$
s(t)=t^{4}-8 t^{3}+10 t^{2}-4
$$

Crit \#: $\quad s^{\prime}(t)=4 t^{3}-24 t^{2}+20 t$
$S^{\prime}(t)$ is never undefined

$$
\begin{aligned}
s^{\prime}(t)=0 \Rightarrow 0 & =4 t^{3}-24 t^{2}+20 t \\
& =4 t\left(t^{2}-6 t+5\right) \\
& =4 t(t-1)(t-5) \\
& \Rightarrow t=0,1, \text { or } 5
\end{aligned}
$$

Sign
analysis on $s^{\prime}(t)$

$$
\begin{array}{lll}
S^{\prime}(-1) & (-)(-)(-) & s^{\prime}\left(\frac{1}{2}\right) \\
(+)(-)(-) \\
S^{\prime}(2) & (+)(+)(-), & s^{\prime}(6)
\end{array}(+)(+)(+), ~ l
$$

f taker locel minimuns @ o ond S toker c locel maximun a $t=1$

