Sept 4 Math 2253H sec. 05H Fall 2014

Section 2.2: The Derivative as a Function

Definition: Let $f(x)$ be a function. Define the new function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

called the derivative of f. The domain of this new function is the set $\left\{x \mid x\right.$ is in the domain of f, and $f^{\prime}(x)$ exists $\}$.

Remarks:

- if $f(x)$ is a function of x, then $f^{\prime}(x)$ is a new function of x (called the derivative of f)
- The number $f^{\prime}(a)$ (if it exists) is the slope of the curve of $y=f(x)$ at the point $(a, f(a))$
- this is also the slope of the tangent line to the curve of y at ($a, f(a))$
- "slope of the curve", "slope of the tangent line", and "rate of change" are the same concept

Definition: A function f is said to be differentiable at a if $f^{\prime}(a)$ exists. It is called differentiable on an open interval $/$ if it is differentiable at each point in I.

Notation

If $y=f(x)$, the following notation are interchangeable:

$$
f^{\prime}(x)=y^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

Leibniz Notation: $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}$

You can think of $\frac{d}{d x}$ is an "operator."
It acts on a function to produce a new function-its derivative.

Example
Find $\frac{d y}{d x}$ if $y=\sqrt{x}$ and determine it's domain.
Domain of y is $\{x \mid x \geqslant 0\}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{z \rightarrow x} \frac{\sqrt{z}-\sqrt{x}}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z}-\sqrt{x}}{z-x} \cdot \frac{\sqrt{z}+\sqrt{x}}{\sqrt{z}+\sqrt{x}} \\
& =\lim _{z \rightarrow x} \frac{z-x}{(z-x)(\sqrt{z}+\sqrt{x})}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{z \rightarrow x} \frac{1}{\sqrt{z}+\sqrt{x}}=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} \\
& \frac{d y}{d x}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

The domain of $\frac{d y}{d x}$ is $\{x \mid x>0\}$.

* y is not differentiable e zero. *

Failure to be Differentiable
Show that $y=|x|$ is not differentiable at zero.
If it exists, then

$$
y^{\prime}(0)=\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

well consider the one sided limits

$$
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1 \\
& \lim _{h \rightarrow 0} \frac{|h|}{h} D N E \quad \text { (one sided disasiee } \text { lime }^{2} \text {) }
\end{aligned}
$$

So $y=|x|$ is not differentiable at zeno.

for $x>0 \quad \frac{d y}{d x}=1$
for $x<0 \quad \frac{d y}{d x}=-1$

Failure to be differentiable: Discontinuity, Vertical

 tangent, or Corner/Cusp

Theorem

Differentiability implies continuity.

That is, if f is differentiable at a, then f is continuous at a. The corner example shows that the converse of this is not true!

Higher Order Derivatives:

First derivative: $\frac{d y}{d x}=y^{\prime}=f^{\prime}(x)$
Second derivative: $\frac{d}{d x} \frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=f^{\prime \prime}(x)$
Third derivative: $\quad \frac{d}{d x} \frac{d^{2} y}{d x^{2}}=\frac{d^{3} y}{d x^{3}}=y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)$

Fourth derivative: $\frac{d}{d x} \frac{d^{3} y}{d x^{3}}=\frac{d^{4} y}{d x^{4}}=y^{(4)}=f^{(4)}(x)$
$n^{\text {th }}$ derivative: $\frac{d}{d x} \frac{d^{n-1} y}{d x^{n-1}}=\frac{d^{n} y}{d x^{n}}=y^{(n)}=f^{(n)}(x)$

Section 2.3: Some Differentiation Rules

The derivative of a constant function is zero.

$$
\frac{d}{d x} c=0
$$

The derivative of the identity function is one.

$$
\frac{d}{d x} x=1
$$

For positive integer n, the power rule says

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Evaluate Each Derivative
(a) $\frac{d}{d x} 3 \pi=0 \quad 3 \pi$ is constant
(b) $\frac{d}{d x} x^{9}=9 x^{9-1}=9 x^{8}$

More Derivative Rules

Assume f and g are differentiable functions and c is a constant. Constant multiple rule:

$$
\frac{d}{d x} c f(x)=c f^{\prime}(x)
$$

Sum rule:

$$
\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

Difference rule:

$$
\frac{d}{d x}(f(x)-g(x))=f^{\prime}(x)-g^{\prime}(x)
$$

Example: Evaluate Each Derivative
(a)

$$
\begin{aligned}
\frac{d}{d x}\left(x^{4}-3 x^{2}\right) & =\frac{d}{d x} x^{4}-\frac{d}{d x} 3 x^{2} \\
& =\frac{d}{d x} x^{4}-3 \frac{d}{d x} x^{2} \\
& =4 x^{4-1}-3\left(2 x^{2-1}\right)=4 x^{3}-6 x
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{d}{d x}\left(2 x^{3}\right. & \left.+3 x^{2}-12 x+1\right)=\frac{d}{d x} 2 x^{3}+\frac{d}{d x} 3 x^{2}-\frac{d}{d x} 12 x+\frac{d}{d x} 1 \\
& \left.=2 \frac{d}{d x} x^{3}+3 \frac{d}{d x} x^{2}-12 \frac{d}{d x} x+\frac{d}{d x} \right\rvert\, \\
& =2\left(3 x^{2}\right)+3(2 x)-12(1)+0=6 x^{2}+6 x-12
\end{aligned}
$$

Example
If $f(x)=2 x^{3}+3 x^{2}-12 x+1$, find all points on the graph of f at which the slope of the graph is zero.
we wart to find x-values of which $f^{\prime}(x)=0$.

$$
\begin{aligned}
0=f^{\prime}(x) & =6 x^{2}+6 x-12=6\left(x^{2}+x-2\right) \\
& \Rightarrow \quad 0=6(x-1)(x+2) \\
& \Rightarrow x=1 \quad \text { or } \quad x=-2
\end{aligned}
$$

y-values

$$
f(1)=2(1)^{3}+3(1)^{2}-12(1)+1=-6
$$

$$
\begin{aligned}
f(-2) & =2(-2)^{3}+3(-2)^{2}-12(-2)+1 \\
& =-16+12+24+1=21
\end{aligned}
$$

There are two points at which the slope of the graph is zeno
$(1,-6)$ and $(-2,21)$.

Even More Rules!

Assume f and g are differentiable functions and n is any real number Product rule:

$$
\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)=f^{\prime} g+g^{\prime} f
$$

Quotient rule:

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}
$$

General Power rule:

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Example
Evaluate $f^{\prime}(x)$ two ways where $f(x)=x^{2}$.

$$
* \frac{d}{d x}(x \cdot x) \neq
$$

Using the power rule.

$$
\begin{gathered}
\left(\frac{d}{d x} x\right) \cdot\left(\frac{(2 x}{x x}\right) \\
1 \cdot 1=1
\end{gathered}
$$

Write $f(x)=x x(x$ times $x)$, and use the product rule.

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{d}{d x} x\right) x+x\left(\frac{d}{d x} x\right) \\
& =1 x+x \cdot 1=x+x=2 x
\end{aligned}
$$

Example
Find $\frac{d y}{d x}$ given
$y=\left(2 x^{3}+x\right)\left(x^{\pi}-14\right) \quad$ Using the product cole

$$
\begin{aligned}
\frac{d y}{d x} & =\left(6 x^{2}+1\right)\left(x^{\pi}-14\right)+\left(2 x^{3}+x\right)\left(\pi x^{\pi-1}-0\right) \\
& =\left(6 x^{2}+1\right)\left(x^{\pi}-14\right)+\pi x^{\pi-1}\left(2 x^{2}+x\right)
\end{aligned}
$$

Example
Find $\frac{d y}{d x}$ given

$$
\begin{aligned}
& y=\frac{x+1}{x^{2}+2 x} \\
& \frac{d y}{d x}=\frac{(1)\left(x^{2}+2 x\right)-(x+1)(2 x+2)}{\left(x^{2}+2 x\right)^{2}} \\
&=\frac{x^{2}+2 x-\left(2 x^{2}+4 x+4\right)}{\left(x^{2}+2 x\right)^{2}}=\frac{-x^{2}-2 x-4}{\left(x^{2}+2 x\right)^{2}}
\end{aligned}
$$

