Sept 5 Math 2253H sec. 05H Fall 2014

Section 2.3: Some Differentiation Rules

$F(x)$	$F^{\prime}(x)$	$F(x)$	$F^{\prime}(x)$
c	0	$c f(x)$	$c f^{\prime}(x)$
x	1	$f g$	$f^{\prime} g+g^{\prime} f$
x^{n}	$n x^{n-1}$	$\frac{f}{g}$	$\frac{f^{\prime} g-g^{\prime} f}{g^{2}}$

Example
Find $f^{\prime \prime}(x)$ given

$$
\begin{aligned}
f(x)=\sqrt[4]{x} & \text { Need } f^{\prime} \text { first } \\
f(x)=x^{1 / 4} & f^{\prime}(x)=\frac{1}{4} x^{\frac{1}{4}-1}=\frac{1}{4} x^{-3 / 4}=\frac{1}{4 \sqrt[4]{x^{3}}} \\
f^{\prime \prime}(x) & =\frac{1}{4}\left(\frac{-3}{4}\right) x^{-3 / 4-1} \\
& =\frac{-3}{16} x^{-7 / 4}
\end{aligned}
$$

Example
Find the equation of the line tangent to the graph of $y=\frac{1}{x^{2}+1}$ at the point $\left(-1, \frac{1}{2}\right)$. Need the slope: the slope $m=\frac{d y}{d x} @ x=-1$

$$
\begin{aligned}
& \left.\frac{d y}{d x}\right|_{x=-1}-\frac{d y}{d x} \text { evaluated at } x=-1 \\
& \frac{d y}{d x}=\frac{0\left(x^{2}+1\right)-1(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-2 x}{\left(x^{2}+1\right)^{2}} \\
& m=\left.\frac{d y}{d x}\right|_{x=-1}=\frac{-2(-1)}{\left((-1)^{2}+1\right)^{2}}=\frac{1}{2}
\end{aligned}
$$

The tangent line has equation

$$
\begin{aligned}
y-\frac{1}{2} & =\frac{1}{2}(x-(-1)) \\
& \Rightarrow y=\frac{1}{2} x+1
\end{aligned}
$$

Normal Line
The line normal to the graph of $y=f(x)$ at the point $(a, f(a))$ is the line perpendicular to the tangent line at that point.

Find the equation of the line normal to $y=\frac{1}{x^{2}+1}$ at the point $\left(-1, \frac{1}{2}\right)$.
The slope of the tangent lin was $\frac{1}{2}$, the slope of the normal lime is -2 .

Normal line: $\quad y-\frac{1}{2}=-2(x+1)$

$$
y=-2 x-\frac{3}{2}
$$

Section 2.4: Derivatives of Trigonometric Functions
Preliminary result:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad \text { and } \quad \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0
$$

$-\sin \theta \quad * 0<\theta<\frac{\pi}{2}$
$-\tan \theta$

- θ

$$
\begin{aligned}
& \theta \leq \tan \theta \Rightarrow \theta \leq \frac{\sin \theta}{\cos \theta} \Rightarrow \\
& \qquad \begin{array}{l}
\cos \theta \leq \frac{\sin \theta}{\theta} \\
\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1 \text { for } 0<\theta<\frac{\pi}{2} \\
\text { For } \quad-\frac{\pi}{2}<\theta<0,0<-\theta<\frac{\pi}{2} \\
\cos (-\theta) \leq \frac{\sin (-\theta)}{-\theta} \leq 1
\end{array}
\end{aligned}
$$

by

$$
\begin{aligned}
& \cos \theta \leq \frac{-\sin \theta}{-\theta} \leq 1 \\
& \cos \theta \leq \frac{\sin \theta}{\theta} \leq 1 \quad \text { for } \theta \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
& \theta \neq 0
\end{aligned} \quad \begin{aligned}
& \lim _{\theta \rightarrow 0} \cos \theta=\sin \theta \\
& \lim _{\theta \rightarrow 0} 1=1 \\
& \theta \rightarrow 1 \quad \text { ine squee } 1
\end{aligned}
$$

b_{r} the squee 3 e thm.

To get $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}$
from the limit $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$
use the double (a.k.a half) anger ID

$$
\cos \theta-1=2 \sin ^{2}\left(\frac{\theta}{2}\right)
$$

