## Sept 8 Math 2253H sec. 05H Fall 2014

## Section 2.4: Derivatives of Trigonometric Functions

Preliminary results:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad \text { and } \quad \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0
$$

We can prove from the definition of the derivative that

$$
\frac{d}{d x} \sin (x)=\cos (x) \text { and } \frac{d}{d x} \cos (x)=-\sin (x)
$$

$$
\begin{aligned}
& \frac{d}{d x} \sin (x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} * \sin (A+B)= \\
& \sin A \cos B+\sin B \cos A
\end{aligned}
$$

$$
\begin{aligned}
& =\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sinh }{h} \\
& =\sin x(0)+\cos x(1) \\
& =\cos x \\
& \text { i.e. } \quad \frac{d}{d x} \sin x=\cos x
\end{aligned}
$$



Evaluate the derivative.
(a)

$$
\begin{aligned}
\frac{d}{d x}(\sin x+4 \cos x) & =\cos x+4(-\sin x) \\
& =\cos x-4 \sin x
\end{aligned}
$$

(b) $\frac{d}{d \theta} \theta^{4} \sin \theta=4 \theta^{3} \sin \theta+\theta^{4} \cos \theta$

Use the fact that $\tan x=\sin x / \cos x$ to determine the derivative rule for the tangent.

$$
\begin{aligned}
\frac{d}{d x} \tan x & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right): \frac{\cos x \cos x-(-\sin x) \sin x}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

## Six Trig Function Derivatives

$$
\begin{aligned}
\frac{d}{d x} \sin x=\cos x, & \frac{d}{d x} \cos x=-\sin x \\
\frac{d}{d x} \tan x=\sec ^{2} x, & \frac{d}{d x} \cot x=-\csc ^{2} x \\
\frac{d}{d x} \sec x=\sec x \tan x, & \frac{d}{d x} \csc x=-\csc x \cot x
\end{aligned}
$$

Example
Find $\frac{d g}{d t}$.

$$
\begin{aligned}
& g(t)=\sqrt{t}-2 \cot t=t^{1 / 2}-2 \cot t \\
& g^{\prime}(t)=\frac{1}{2} t^{-1 / 2}-2\left(-\csc ^{2} t\right) \\
& g^{\prime}(t)=\frac{1}{2 \sqrt{t}}+2 \csc ^{2} t
\end{aligned}
$$

Example
Find the equation of the line normal to the graph of $y=\sec x$ at the point ( $\pi,-1$ ).

Get slope of the tangent line:

$$
\frac{d y}{d x}=\sec x \tan x
$$

Tangent line has slope $m=\left.\frac{d y}{d x}\right|_{x=\pi}=\sec \pi \tan \pi=0$

The normal line is vertical.

$$
x=\pi
$$

## Example

Use the limit identity $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ to evaluate the indicated limit.
(a) $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}=\lim _{x \rightarrow 0} \frac{\operatorname{Sin}(2 x)}{2 x} \cdot 2$
$=2 \lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}$
$=2(1)=2$
(b)

$$
\begin{aligned}
\lim _{x \rightarrow 0} 3 x \csc (4 x) & =\lim _{x \rightarrow 0} \frac{3 x}{\sin (4 x)}=\lim _{x \rightarrow 0}\left(\frac{\sin (4 x)}{3 x}\right)^{-1} \\
& =\lim _{x \rightarrow 0}\left(\frac{1}{3} \frac{\sin (4 x)}{x}\right)^{-1} \\
& =\lim _{x \rightarrow 0}\left(\frac{4}{3} \frac{\sin (4 x)}{4 x}\right)^{-1} \\
& =\left(\frac{4}{3} \cdot 1\right)^{-1}=\frac{3}{4}
\end{aligned}
$$

## Section 2.5: The Chain Rule

Suppose we wish to find the derivative of $f(x)=\left(x^{2}+2\right)^{2}$.

$$
\begin{aligned}
& f(x)=x^{4}+4 x^{2}+4 \\
& \quad f^{\prime}(x)=4 x^{3}+8 x
\end{aligned}
$$

Now suppose we want to differentiate $g(x)=\left(x^{2}+2\right)^{10}$. How about $F(x)=\sqrt{x^{2}+2}$ ?

Example of Compositions
Find functions $f(u)$ and $g(x)$ such that

$$
\begin{aligned}
F(x)=\sqrt{x^{2}+2} & =(f \circ g)(x) . \\
& =f(g(x))
\end{aligned}
$$

$$
\begin{aligned}
& f(u)=\sqrt{w} \\
& g(x)=x^{2}+2
\end{aligned}
$$

Check:

$$
\begin{aligned}
f(g(x)) & =f\left(x^{2}+2\right) \\
& =\sqrt{x^{2}+2} \\
& =F(x)
\end{aligned}
$$

Example of Compositions
Find functions $f(u)$ and $g(x)$ such that

$$
F(x)=\cos \left(\frac{\pi x}{2}\right)=(f \circ g)(x) .
$$

$$
\begin{aligned}
& f(u)=\cos (n) \\
& g(x)=\frac{\pi}{2} x
\end{aligned}
$$

Check:

$$
\begin{aligned}
f(g(x)) & =f\left(\frac{\pi}{2} x\right) \\
& =\operatorname{Cos}\left(\frac{\pi}{2} x\right) . \\
& =F(x) \quad
\end{aligned}
$$

## Theorem: Chain Rule

Suppose $g$ is differentiable at $x$ and $f$ is differentiable at $g(x)$. Then the composite function

$$
F=f \circ g
$$

is differentiable at $x$ and

$$
\frac{d}{d x} F(x)=\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Liebniz notation: if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} .
$$

Example
Determine any inside and outside functions and find the derivative.

$$
\begin{aligned}
& \text { (a) } \\
& F(x)=\sin ^{2} x=(\sin x)^{2} \\
& F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \\
& =2 \sin x \cos x \\
& \begin{array}{l}
f(u)=u^{2} \\
g(x)=\sin x \\
f^{\prime}(u)=2 u \\
g^{\prime}(x)=\cos x
\end{array}
\end{aligned}
$$

