Sept 9 Math 2253H sec. 05H Fall 2014

Section 2.5: The Chain Rule

Theorem: Suppose g is differentiable at x and f is differentiable at $g(x)$. Then the composite function

$$
F=f \circ g
$$

is differentiable at x and

$$
\frac{d}{d x} F(x)=\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Liebniz notation: if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Identify the parts of the composition, and evaluate the derivative.
(b)

$$
\begin{aligned}
F(x) & =\sqrt[3]{x^{4}-5 x^{2}+1} \\
& =\left(x^{4}-5 x^{2}+1\right)^{1 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& f(u)=u^{1 / 3} \\
& g(x)=x^{4}-5 x^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
F^{\prime}(x) & =f^{\prime}(g(x)) g^{\prime}(x) \\
& =\frac{1}{3}\left(x^{4}-5 x^{2}+1\right)\left(4 x^{3}-10 x\right) \\
& =\frac{4 x^{3}-10 x}{3 \sqrt[3]{\left(x^{4}-5 x^{2}+1\right)^{2}}}
\end{aligned}
$$

$$
g^{\prime}(x)=4 x^{3}-10 x
$$

(c) $G(\theta)=\cos (\sqrt{2 \theta})$

$$
G(\theta)=f(g(h(\theta)))
$$

$$
\begin{aligned}
G^{\prime}(\theta) & =f^{\prime}(g(h(\theta))) \cdot \frac{d}{d \theta} g(h(\theta)) \\
& \left.=f^{\prime}(g(h(\theta))) g^{\prime}(h \theta)\right) h^{\prime}(\theta) \\
& =-\sin (\sqrt{2 \theta}) \frac{1}{2}(2 \theta) \cdot 2 \\
& =\frac{-\sin (\sqrt{2 \theta})}{\sqrt{2 \theta}}
\end{aligned}
$$

$$
f(v)=\cos (v)
$$

$$
g(u)=\sqrt{u}=u^{1 / 2}
$$

$$
h(\theta)=2 \theta
$$

$$
\begin{aligned}
f(g(h(\theta))) & =f(g(2 \theta)) \\
& =f(\sqrt{2 \theta}) \\
& =\cos (\sqrt{2 \theta})
\end{aligned}
$$

The power rule with the chain rule
If $u=g(x)$ is a differentiable function and n is a real number, then

$$
\frac{d}{d x} u^{n}=n u^{n-1} \frac{d u}{d x}
$$

Evaluate:

$$
\begin{aligned}
\frac{d}{d x} & \left(\frac{x-1}{2 x+2}\right)^{7}=7\left(\frac{x-1}{2 x+2}\right)^{6} \cdot \frac{d}{d x}\left(\frac{x-1}{2 x+2}\right) \\
& =7\left(\frac{x-1}{2 x+2}\right)^{6}\left(\frac{4}{(2 x+2)^{2}}\right) \\
& =\frac{28(x-1)^{6}}{(2 x+2)^{8}}
\end{aligned}
$$

Side problem: If $u=\frac{x-1}{2 x+2}$

$$
\frac{d v}{d x}=\frac{1(2 x+2)-2(x-1)}{(2 x+2)^{2}}=\frac{2 x+2-2 x+2}{(2 x+2)^{2}}=\frac{4}{(2 x+2)^{2}}
$$

Example
Find the equation of the line tangent to the graph of $y=\cos ^{4} x$ at the point $\left(\frac{\pi}{4}, \frac{1}{4}\right)$.

$$
=(\cos x)^{y}
$$

We need the slope:

$$
\begin{aligned}
\begin{aligned}
& \frac{d y}{d x}=4(\cos x)^{3}(-\sin x)=-4 \cos ^{3} x \sin x \\
& \text { Slope } m=\left.\frac{d y}{d x}\right|_{x=\frac{\pi}{4}}=-4 \cos ^{3}\left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{4}\right)=-4\left(\frac{1}{\sqrt{2}}\right)^{3}\left(\frac{1}{\sqrt{2}}\right) \\
&=-4\left(\frac{1}{4}\right)=-1 \\
& y-\frac{1}{4}=-1\left(x-\frac{\pi}{4}\right) \Rightarrow y=-x+\frac{\pi}{4}+\frac{1}{4}
\end{aligned}
\end{aligned}
$$

Figure: $y=\cos ^{4} x$ and the tangent line at $\left(\frac{\pi}{4}, \frac{1}{4}\right)$.

We may be able to choose between differentiation methods.

Evaluate $\frac{d}{d x} \frac{\sin x}{x^{3}+2}$ using
(a) The quotient rule:

$$
\frac{d}{d x} \frac{\sin x}{x^{3}+2}=\frac{\cos x\left(x^{3}+2\right)-3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}}
$$

(b) writing $\frac{\sin x}{x^{3}+2}=(\sin x)\left(x^{3}+2\right)^{-1}$ and using the chain rule.

$$
\begin{aligned}
\frac{d}{d x} \frac{\sin x}{x^{3}+2} & =\frac{d}{d x} \sin x\left(x^{3}+2\right)^{-1} \\
& =\cos x\left(x^{3}+2\right)^{-1}+\sin x\left(-1\left(x^{3}+2\right)^{-2}\left(3 x^{2}\right)\right) \\
& =\frac{\cos x}{x^{3}+2}-\frac{3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\cos x\left(x^{3}+2\right)}{\left(x^{3}+2\right)^{2}}-\frac{3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}}=\frac{\cos x\left(x^{3}+2\right)-3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}}
\end{aligned}
$$

Section 2.7: Applications in Various Sciences

Recall: If x and y are an independent and a dependent variable, respectively, with $y=f(x)$, and x changes from x_{1} to x_{2}, then

The change in x is $\quad \Delta x=x_{2}-x_{1}$.
The change in y is $\quad \Delta y=f\left(x_{2}\right)-\left(x_{1}\right)$.
The average rate of change of $y \mathrm{w} / \mathrm{r} / \mathrm{t} x$ on $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} .
$$

And the instantaneous rate of change of $y \mathrm{w} / \mathrm{r} / \mathrm{t} x$ at x_{1} is

$$
\left.\frac{d y}{d x}\right|_{x_{1}}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} .
$$

Position/Velocity/Acceleration

If $s=f(t)$ is the postition of a particle moving along a straight line path (e.g. the x-axis), then
$\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}$ is the average velocity over the time period $t_{1} \leq t \leq t_{2}$.
$v\left(t_{1}\right)=s^{\prime}\left(t_{1}\right)$ is the velocity of the particle at time $t=t_{1}$.
$a\left(t_{1}\right)=v^{\prime}\left(t_{1}\right)=s^{\prime \prime}\left(t_{1}\right)$ is the velocity of the particle at time $t=t_{1}$.

Example
A particle moves along the x-axis so that its position s in feet at time t in seconds is

$$
s=t^{3}-9 t^{2}+24 t+5
$$

(a) Find the posititions of the particle at times $t=0$ and $t=2$.

$$
\begin{aligned}
S(0)=5 \mathrm{ft} \quad S(2) & =2^{3}-9\left(2^{2}\right)+24(2)+5 \\
& =8-36+48+5=25 \mathrm{ft} \\
S(0)=5 \mathrm{ft} \quad & S(2)=25 \mathrm{ft}
\end{aligned}
$$

(b) Find the average velocity of the particle for $0 \leq t \leq 2$.

$$
\text { avs. vel }=\frac{S(2)-\delta(0)}{2-0}=\frac{2 s \mathrm{ft}-5 \mathrm{ft}}{2 \mathrm{sec}-\mathrm{osec}^{\prime}}=10 \frac{\mathrm{ft}}{\mathrm{sec}}
$$

$s=t^{3}-9 t^{2}+24 t+5$
(c) Determine the velocity $v(t)$ of the particle.

$$
v(t)=s^{\prime}(t)=3 t^{2}-18 t+24
$$

(d) Determine the acceleration $a(t)$ of the particle.

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=6 t-18
$$

$$
s=t^{3}-9 t^{2}+24 t+5
$$

(e) When is the particle moving to the right?

The particle moves to the right when $V(t)>0$.

$$
v(t)=3 t^{2}-18 t+24=3\left(t^{2}-6 t+8\right)=3(t-2)(t-4)
$$

$V(t)>0$ if $0 \leq t<2$ or $t>4$

The particle moves to the right
 when $0 \leq t<2$ and when $t>4$.
(f) When is the particle at rest?
"At rest" means change in position is PhO.
ie. $\quad V(t)=0$

$$
V(t)=3(t-4)(t-2) \Rightarrow V(t)=0 \text { if } t=2 \text { or } t=4 \text {. }
$$

Electro-Magnetics

When electrons move through a wire, a change in electric charge occurs. Rate of change of charge is current.

If the charge on the cross section is Q_{1} at time t_{1} and Q_{2} at time t_{2}, then

$$
\text { average current over this interval }=\frac{\Delta Q}{\Delta t}=\frac{Q_{2}-Q_{1}}{t_{2}-t_{1}} \text {. }
$$

The quantities current $I(t)$ and charge $Q(t)$ are related by $\quad I(t)=\frac{d Q}{d t}$.

Example

Ohm's law states that the voltage drop across a resistor is proportional to the current. The constant of proportionality R is called the resistance. Mathematically, the potential difference V (in volts), current I (in amperes), and resistance R (in ohms) satisfy

$$
V=I R .
$$

Suppose the charge at time t is known to be $Q(t)=q_{0} \sin (\omega t)$ where q_{0} and ω are constant. If the resistance is $R=100$ ohms, express V as a function of t in terms of q_{0} and ω.

$$
V=I R \quad \text { and } \quad I=\frac{d Q}{d t}
$$

$$
\begin{aligned}
& Q(t)=q_{0} \sin (\omega t) \\
& I=\frac{d Q}{d t}=q_{0} \cos (\omega t) \cdot \omega \\
& I=q_{0} \omega \cos (\omega t) \\
& V=R I=100 q_{0} \omega \cos (\omega t)
\end{aligned}
$$

