(1) Consider \(f(x) = \sqrt[4]{x} \). Find the Taylor polynomials of orders 1 and 2 (i.e. \(p_1(x) \) and \(p_2(x) \)) for \(f \) centered at \(a = 16 \). Use \(p_1 \) to approximate \(\sqrt[4]{15} \). Use \(p_2 \) to get a better approximation to \(\sqrt[4]{15} \).
(2) The function

\[f(x) = \frac{e^x - (1 + x)}{x^2} \]

is not defined at \(x = 0 \). Use the Taylor polynomial of degree four centered at zero to approximate \(e^x \), and use this to find a natural way to define \(f(0) \). Compare this value of \(f(0) \) to the limit, \(\lim_{x \to 0} f(x) \), obtained using L'Hopital’s rule.
(3) Use Taylor’s theorem to find the n^{th} degree Taylor polynomial $p_n(x)$ with the remainder $R_n(x)$ for the function

$$f(x) = \frac{1}{2 - x}$$

centered at $a = 1$.