Home work 2: Due Thurs. Feb. 4, 2016 at the beginning of class

 Math 2335 Spring 2016
Name:

\qquad
(1) Calculate the error, relative error and number of significant digits in the following approximations $x_{A} \approx x_{T}$.
(a) $x_{T}=\frac{1+\sqrt{5}}{2}, \quad x_{A}=1.6$
(b) $x_{T}=e, \quad x_{A}=87 / 32$
(2) Use any combination(s) of algebra, identities, or Taylor polynomials to avoid loss of significance errors when the following expression is evaluated near the x values indicated.
(a) $\sqrt{1+\frac{1}{x}}-1, \quad x$ very large (i.e. as $\left.x \rightarrow \infty\right)$
(b) $\frac{e^{x}-e^{-x}}{x}, \quad x \approx 0$
(3) Suppose $x_{A}=1.54$ is an approximation to x_{T} that is correctly rounded to the digits shown.
(a) Bound the error $\left|\operatorname{Err}\left(x_{A}\right)\right|$.
(b) Bound the error $\left|f\left(x_{T}\right)-f\left(x_{A}\right)\right|$ and the relative error $\left|\operatorname{Rel}\left(f\left(x_{A}\right)\right)\right|$ in the approximation $f\left(x_{A}\right)=e^{1.54}$.

