Home work 3: Due Thurs. Feb. 11, 2016 Math 2335 Spring 2016

Name:

\qquad
(1) Let $f(x)=(x-1)(x-2)(x-3)$. Note that $f(1)=0$. Let $x_{T}=1$, and $x_{A}=1+10^{-4}$. Use the formula for propagated error (e.g. (2.43) from page 60 in Atkinson and Han) to show that the propagated error $E=f\left(x_{T}\right)-f\left(x_{A}\right)$ is about double the error $\operatorname{Err}\left(x_{A}\right) \cdot{ }^{1}$ (Hint: It is best to use the product rule when computing $f^{\prime}(x)$ rather than expanding f.)

[^0]$$
f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8) ?
$$
(2) Let $g(x)=e^{-x}$ and $h(x)=\ln (x+1)$. Demonstrate graphically that there is a solution to the equation $g(x)=h(x)$. Use the bisection method with a hand calculator or a computer to find the root accurate to within $\epsilon=0.01$. Produce a table of your iterates with the following columns: $n, a_{n}, b_{n}, c_{n}, b_{n}-c_{n}$. (Hand written is fine.) For example:
\[

$$
\begin{array}{|ccccc|}
\hline n & a_{n} & b_{n} & c_{n} & b_{n}-c_{n} \\
\hline \vdots & \vdots & \vdots & \vdots & \vdots \\
\hline
\end{array}
$$
\]

(3) Let α be the unique positive root of $f(x)$. Find an interval $[a, b]$ containing α for which the bisection method will converge to α. Then, estimate the number of iterates needed to find α within an accuracy or $\epsilon=10^{-9}$. Note: Your answer should be justified and will depend on the choice of $[a, b]$.
(a) $f(x)=31 x^{3}-x^{2}+27 x-2125$
(b) $\quad f(x)=e^{x}-x-2$

[^0]: ${ }^{1}$ Two point bonus: Can you extend this to determine how the propogated error would be related to $\operatorname{Err}\left(x_{A}\right)$ if

