Home work 6: Due Thurs. March. 10, 2016 Math 2335 Spring 2016

Name: _____

(1) Consider the data in the table	x_n	1.1	1.2	1.3
(1) Consider the data in the table	$f(x_n)$	0.1	0.22	0.40

(a) Compute the divided differences $f[x_0, x_1]$ and $f[x_0, x_1, x_2]$.

(b) Find the linear and quadratic interpolating polynomials using the Newton Divided Difference formulation. (c) Suppose we know that the data comes from a function f(x) that is twice differentiable and that $|f''(c)| \le M$ for all c in the interval [1.1, 1.3]. Show that the error

$$|f(x) - P_1(x)| \le \frac{0.01M}{8}$$
, for $1.1 \le x \le 1.2$.

(2) Let $f(x) = x^2$ for $0 \le x \le 1$. Compute the second order divided difference $f[x_0, x_1, x_2]$ for each set of nodes. Which theorem does this demonstrate?

(a)	$x_0 = 0,$	$x_1 = \frac{1}{2},$	$x_2 = 1$
(b)	$x_0 = 0,$	$x_1 = \frac{1}{3},$	$x_2 = 1$
(c)	$x_0 = a,$	$x_1 = b,$	$x_2 = c$ for any different numbers a, b and c .