Home work 7: Due Thurs. March. 24, 2016 Math 2335 Spring 2016

Name:

\qquad
(1) (a) Consider finding the polynomial interpolation $P_{3}(x)$ for $f(x)=e^{-x^{2}}$ over the interval $[-1,1]$. If the optimal nodes are used in order to reduce the error, find a bound on the error

$$
\left|\operatorname{Err}\left(P_{3}(x)\right)\right|=\left|f(x)-P_{3}(x)\right|
$$

(b) Suppose instead that f is to be interpolated by P_{3} over the interval $[0,1]$. Bound the error $\left|f(x)-P_{3}(x)\right|$ in this case. (Again assume that the optimal, now shifted, nodes are used.)
(2) Consider the data points $\{(0,2),(1,1),(2,-1)\}$.
(a) Find the piecewise linear interpolating function for the data, and
(b) the natural cubic spline that interpolates the data.

Your answer should be presented clearly as piecewise defined functions in simplified form.

