Home work 9: Due Thurs. April 28, 2016 Math 2335 Spring 2016

Name: \qquad
(1) Consider the numerical approximation to $f^{\prime}(x)$ given by

$$
f^{\prime}(x) \approx \frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h} .
$$

Approximate $f^{\prime}(x)$ for $f(x)=\ln x$ at $x=1$ and try to determine the order ${ }^{\dagger}$ of the approximation. To do this, evaluate the approximation for $h_{1}=0.1, h_{2}=0.05, h_{3}=0.025$, $h_{4}=0.0125$, and $h_{5}=0.00625$ using 10 digits to the right of the decimal point. Compute the error $E_{i}, i=1 . .5$ obtained using each h value. Use the ratios E_{i} / E_{i+1} to draw your conclusion. Fill in the following table:

i	h_{i}	$\frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h}$	Error E_{i}	E_{i} / E_{i+1}
1	0.1			
2	0.05			
3	0.025			
4	0.0125			
5	0.00625			

[^0](2) Use the method of undertermined coefficients to find a numerical differentiation formula for $f^{\prime}(x)$ of the form
$$
f^{\prime}(x) \approx A f(x+2 h)+B f(x+h)+C f(x)
$$

[^0]: ${ }^{\dagger}$ If the error is proportional to h^{p}, then the order of the approximation is p.

