The length L of the parametric curve $(x, y)=(f(t), g(t))$, where $a \leq t \leq b$ and f and g are differentiable, is the value of the integral

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Depending on the functions f and g, an integral of this form may be very difficult to evaluate exactly.

Let $(x, y)=\left(t, \cos ^{-1} t\right)$ for $-1 \leq t \leq 1$.
(a) Set up an integral for the length of this curve.
(b) Then use the Gaussian integral approximation I_{2} to approximate its value.
(c) What happens if you try to implement S_{4} ?

