January 10 MATH 1112 sec. 54 Spring 2020

Relations \& Functions

We recall the following terminology associated with function notation:

- In $f(x), f$ is the function and x is its argument.
- x represents an element of the domain, $f(x)$ is an element of the range.
- Since $y=f(x), x$ is called the independent variable and y is called the dependent variable.
- $y=f(x)$ reads " y equals f of x "
- The collection of points $(x, f(x))$, for each x in the domain, is called the graph of f.

Graph of $f(x)=-x^{2}+2 x+4$

x	$f(x)$	$(x, f(x))$
$-\frac{3}{2}$	$-\frac{5}{4}$	$\left(-\frac{3}{2},-\frac{5}{4}\right)$
-1	1	$(-1,1)$
0	4	$(0,4)$
1	5	$(1,5))$
$\frac{3}{2}$	$\frac{19}{4}$	$\left(\frac{3}{2}, \frac{19}{4}\right)$
3	1	$(3,1)$

Figure: A table with several sample values and a graph of $y=f(x)$.

Question

From the graph of $y=f(x)$, evaluate $f(2)$

(a) 1
(b) 1 and 3.6

Vertical Line Test

The graph of a function can be intersected at most one time by any vertical line.

Figure: Plots of two relations. One is a function, the other is not.

Domain \& Range

Unless stated otherwise, the domain of a function defined by an equation $y=f(x)$ is assumed to be the largest subset of the real numbers for which the value $f(x)$ is defined. In general, we eliminate any real numbers for which $f(x)$ is not defined as a real number. Recall

- division by zero is not defined
- negative numbers do not have any even roots (square root, fourth root, etc.)
- other function properties are (or will be) known such as negative numbers having no logarithms

Example
Determine the domain of $f(x)=\frac{\sqrt{x}}{x-1}$
well determine what could not be in the domain.

We cart hove $x-1=0$ (division by zero) 1 is not in the domain.

Due to \sqrt{x} term, we need x non negative.

In interval notation x nonnegative is

$$
x \geq 0 \quad[0, \infty)
$$

$f(x)=\frac{\sqrt{x}}{x-1} \quad \begin{aligned} & x \neq 1 \text { in interval notation is } \\ & (-\infty, 1) \cup(1, \infty)\end{aligned}$
Satisfiong both, the domain is

$$
[0,1) \cup(1, \infty)
$$

Question

$$
\begin{gathered}
\sqrt{x+3} \quad \text { requines } \\
x+3 \geqslant 0 \\
x \geqslant-3
\end{gathered}
$$

$$
\frac{1}{\sqrt{x+3}} \text { requires }
$$

$$
x+3>0
$$

(c) $[-3, \infty)$
$x>-3$
(d) $(-\infty,-3) \cup(-3, \infty)$

Domain \& Range

- The range may be difficult to infer from a formula. Sometimes it is possible by recalling known properties-e.g. $|x|$ is always nonnegative.
- The domain and range can often be determined from a graph.
- Recall that the range is the set of all possible $f(x)$-i.e. y-values.

Domain \& Range from a Graph

$$
\begin{aligned}
& \text { observing } x \text { from } \\
& -4 \text { to } 4 \text {, the } \\
& \text { is a b-value for }
\end{aligned}
$$

$$
\text { each } x \text { except } 1 \text {. }
$$

The domain is

$$
[-4,1) \cup(1,4]
$$

Figure: Identify the domain from the plot $y=f(x)$

Domain \& Range from a Graph

The lowest point is $(-4,-3)$. There is an open circle © $(1,2)$. There is curve for all y with $-3 \leq y<2$
In interne rotation
The range is

$$
[-3,2)
$$

Figure: Identify the range from the plot of $y=f(x)$

Question

 Identify the domain and range from the graph of $y=f(x)$.
(a) Domain is $(-\pi, 2 \pi)$, Range is $(-1,1)$
(b) Domain is $[-\pi, 2 \pi]$, Range is $[-1,1]$
(c) Domain is $[-\pi, \pi) \cup(\pi, 2 \pi]$, Range is $(-1,1]$
(d) Domain is $[-\pi, \pi) \cup(\pi, 2 \pi]$, Range is $[-1,1]$
(e) can't be determined without more information

