## January 11 MATH 1112 sec. 54 Spring 2019

## Two Equations in Two Variables (section 9.1)

We consider a system of two linear equations in two variables

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

We can try to solve this system using substitution, elimination, or graphing.

## Two Equations in Two Variables

Theorem: Let $a, b, c, d, e$, and $f$ be fixed constants. The system of equations

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

satisfies one of three cases:

- It has exactly one solution.
- It has infinitely many solutions.
- It has no solutions.

If the system has a solution (first two cases), it is called consistent. If it has no solutions, it is called inconsistent.

## Consistent and Inconsistent Systems

Consistent Independent: A system is called this when it has exactly one solution. Graphically, two lines intersect in one point.

Consistent Dependent: A system is called this when it has infinitely many solutions. Graphically, the equations define the same line. All points on that line represent solutions.

Inconsistent: A system is called this when it has no solutions. Graphically, the equations define distinct, parallel lines.

|  |  |
| :---: | :---: |
|  | Graphical Illustration of Solution Cases <br> (a) $x-y=-1$ One solution case. $2 x+y=3 \quad$ Intersecting lines <br> (b) $x-y=-1$ Infinitely many solutions. $2 x-2 y=-2 \quad$ One line <br> (c) $x-y=-1$ No solutions case. $2 x-2 y=2 \quad$ Parallel lines |

Example
Determine if the system is consistent. If so, characterize the solution.

$$
\begin{array}{r}
\begin{array}{l}
2 x+y=3 \\
x+\frac{1}{2} y=\frac{3}{2} \\
2 x+y=3 \Rightarrow y=3-2 x
\end{array} \quad \text { using substitution }
\end{array}
$$

Subbing in

$$
\begin{aligned}
x+\frac{1}{2}(3-2 x) & =\frac{3}{2} \\
x+\frac{3}{2}-x & =\frac{3}{2} \\
\frac{3}{2} & =\frac{3}{2} \quad \text { this is always true) }
\end{aligned}
$$

This system is consistent, dependent.

The solutions are all the points on the line $y=-2 x+3$ (we got this from the $1^{\text {st }}$ equation)

## Question

Consider the system of equations

$$
\begin{aligned}
& x-y=3 \\
& 3 x+y=5
\end{aligned}
$$

(a) This is consistent, independent with solutions $(4,1)$.
(B) This is consistent, independent with solutions $(2,-1)$.
(6) This is consistent, dependent with infinitely many solutions.
(P) This is inconsistent.

$$
\begin{aligned}
& x=3+y \\
& 3(3+y)+y=5 \\
& 9+3 y+y=5 \\
& 4 y=-4 \quad y=-1 \\
& x=3+(-1)=2
\end{aligned}
$$

## Circles (Back to Section 1.1)

Definition: A circle is the set of all points in a plane equidistant from a fixed point called the center. The fixed distance is called the radius.

Equation of a circle: If the point $(h, k)$ is the center of a circle of radius $r$ in the Cartesian plane, then the set of points $(x, y)$ on the circle satisfy

$$
(x-h)^{2}+(y-k)^{2}=r^{2} .
$$

The above is refered to as the standard form of the equation of the circle.

## Question

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

The equation

$$
(x-2)^{2}+y^{2}=5
$$

defines a circle with

$$
(x-2)^{2}+(y-0)^{2}=(\sqrt{5})^{2}
$$

(a) center $(-2,0)$ and radius 5
(b) center $(0,2)$ and radius $\sqrt{5}$
(C) center $(2,0)$ and radius $\sqrt{5}$
(d) center $(2,0)$ and radius 25

Example
Plot the circle whose points $(x, y)$ satisfy the equation

$$
x^{2}+y^{2}-2 x+4 y-4=0
$$

we need to know the center $(h, k)$ and radius $r$. well complete the square to write this as

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =5^{2} \\
x^{2}-2 x+y^{2}+4 y & =4
\end{aligned}
$$

Complete the squares

$$
\text { add } 1
$$

$$
\text { add } 4
$$

$$
\begin{aligned}
x^{2}-2 x+1+y^{2}+4 y+4 & =4+1+4 \\
(x-1)^{2}+(y+2)^{2} & =9 \\
(x-1)^{2}+(y+2)^{2} & =3^{2} \\
h=1 \quad k=-2 \quad r & =3
\end{aligned}
$$

Centen $(1,-2)$ radius 3


