January 11 Math 2306 sec. 53 Spring 2019

Section 1: Concepts and Terminology

We define solutions of the nth order ODE $F(x, y, y', ..., y^{(n)}) = 0$ (*) **Definition:** A function ϕ defined on an interval 1 I and possessing at least *n* continuous derivatives on *l* is a **solution** of (*) on *l* if upon substitution (i.e. setting $y = \phi(x)$) the equation reduces to an identity.

Definition: An **implicit solution** of (*) is a relation G(x, y) = 0provided there exists at least one function $y = \phi$ that satisfies both the differential equation (*) and this relation.

¹The interval is called the *domain of the solution* or the *interval of definition*.

An Implicit Solution

Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$y^2 - 2x^2y = 1, \qquad \frac{dy}{dx} = \frac{2xy}{y - x^2}$$

We'll assume that $y^2 - 2x^2y = 1$ is true, and show that the differential equation must therefore be true. We start with $y^2 - 2x^2y = 1$ and find $\frac{dy}{dx}$ using implicit differentiation.

$$Q_{y} \frac{dy}{dx} - 2\left(exy + x^{2}\frac{dy}{dx}\right) = 0$$

It may not be possible to clearly identify the domain of definition of an implicit solution.

January 9, 2019

2/36

$$y \frac{dy}{dx} - 2xy - x^2 \frac{dy}{dx} = 0$$

$$(y-x^2)\frac{dy}{dx} = 2xy$$

$$\frac{dy}{dx} = \frac{2xy}{y-x^2}$$

Function vs Solution

The interval of defintion has to be an interval.

Example: Consider the ODE
$$y' = -y^2$$
. A solution is $y = \frac{1}{x}$.

The interval of defintion can be

$$(-\infty,0)$$
 or $(0,\infty)$

or any interval that doesn't contain the origin.

But it CAN't be $(-\infty,0) \cup (0,\infty)$ because this isn't an interval!

Depending on other available information, we often assume *I* is the largest (or one of the largest) possible intervals.

Function vs Solution

The graph of an ODE solution² will not have disconnected pieces.

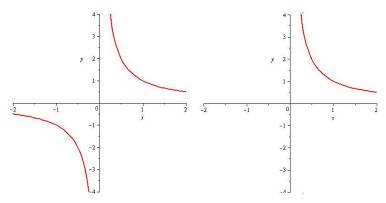


Figure: Left: Plot of $f(x) = \frac{1}{x}$ as a **function**. Right: Plot of $f(x) = \frac{1}{x}$ as a possible solution of an ODE.

²This is known as a *classical solution*.

Unspecified Constants in a Function

Show that for any choice of constants c_1 and c_2 , $y = c_1 x + \frac{c_2}{x}$ is a solution of the differential equation

$$x^2y'' + xy' - y = 0$$

We'll show that the ODE is true when we substitute with out patting only conditions on the numbers

C, and C2.

$$y = C_1 \times + C_2 \times^{1}$$

 $y' = C_1 - C_2 \times^{2}$
 $y'' = 0 + 2 C_2 \times^{3}$

$$x^{2}y'' + xy' - y =$$

$$x^{3}(ac_{2}x^{3}) + x(c_{1} - c_{2}x^{2}) - (c_{1}x + c_{2}x^{2}) =$$

$$a(c_{2}x^{3}) + c_{1}x - c_{2}x^{3} - c_{1}x - c_{2}x^{3} =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(c_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(c_{1} - c_{1}) =$$

$$x'(a) + x(a) = 0$$

$$0 = 0$$

Note this holds for any pair of numbers C, Cz.

Some Terms

- ▶ A **parameter** is an unspecified constant such as c_1 and c_2 in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An *n*-parameter family of solutions is one containing *n* parameters (e.g. $c_1x + \frac{c_2}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- ▶ The **trivial solution** is the simple constant function y = 0.
- ► An **integral curve** is the graph of one solution (perhaps from a family).

Section 2: Initial Value Problems

An initial value problem consists of an ODE with a certain type of additional conditions.

Solve the equation ³

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$
 (1)

subject to the initial conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, y^{(n-1)}(x_0) = y_{n-1}.$$
 (2)

The problem (1)–(2) is called an *initial value problem* (IVP).

³on some interval *I* containing x_0 .

IVPs

First order case:

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

The ODE part tells us what the slope of the curve is at each point. The initial condition tells us the graph of y passes through (x0,50).

Second order case: $\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$

If y is the position of a particle at time x, the ODE specifies its acceleration.

yo = its initial position, y = its initial velocity

Example

Given that $y = c_1 x + \frac{c_2}{x}$ is a 2-parameter family of solutions of $x^2 y'' + xy' - y = 0$, solve the IVP

$$x^2y'' + xy' - y = 0$$
, $y(1) = 1$, $y'(1) = 3$

We already know that solutions to the ODE look like $y=C_1\times+\frac{C_2}{\times}$. We need to find values of C_1 , C_2 so that y(1)=1 and y'(1)=3.

$$y(x) = c_1 x + \frac{c_2}{x}$$
 $y(1) = c_1(1) + \frac{c_2}{1} = 1$

$$y'(x) = c_1 - \frac{c_2}{x^2}$$
 $y'(1) = c_1 - \frac{c_2}{1^2} = 3$

$$C_1 + C_2 = 1$$

$$C_1 - C_2 = 3$$

$$2C_1 = 4 \implies C_1 = 2$$

$$C_1 + C_2 = 1 \implies C_2 = 1 - C_1 = 1 - 2 = -1$$

The solution to the NP is $y = 2x - \frac{1}{x}$.

add the equations

Example

Part 1

Show that for any constant c the relation $x^2 + y^2 = c$ is an implicit solution of the ODE

$$\frac{dy}{dx} = -\frac{x}{y}$$

From
$$x^2+y^2=C$$
, $2x + 2y \frac{dy}{dx} = 0$

$$2y \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} = \frac{-2x}{5} = \frac{-x}{5} \quad (for y \neq 0)$$

Example

Part 2

Use the preceding results to find an explicit solution of the IVP

$$\frac{dy}{dx} = -\frac{x}{y}, \quad y(0) = -2$$

We know that $\chi^2 + \chi^2 = C$ for some number C.

$$0^{2} + (-2)^{2} = C \Rightarrow C = Y$$

To find an explicit solution solve for &.

$$y^2 = 4 - x^2 \Rightarrow y = \sqrt{4 - x^2}$$
 or $y = -\sqrt{4 - x^2}$

Since
$$y(0) = -2$$
, the explicit solution
to the IJP is $y = -\sqrt{4-x^2}$

Graphical Interpretation

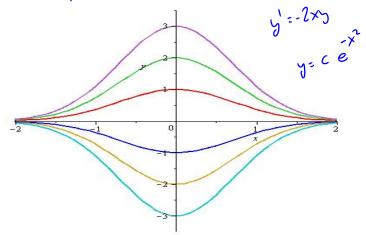


Figure: Each curve solves y' + 2xy = 0, $y(0) = y_0$. Each colored curve corresponds to a different value of y_0

