January 11 Math 2306 sec. 54 Spring 2019

Section 1: Concepts and Terminology

We define solutions of the $\mathrm{n}^{\text {th }}$ order ODE $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$ Definition: A function ϕ defined on an interval ${ }^{1} /$ and possessing at least n continuous derivatives on I is a solution of (*) on l if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of $\left(^{*}\right)$ is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

[^0]An Implicit Solution
Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$
y^{2}-2 x^{2} y=1, \quad \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
$$

w' ll show that when x and y satisfy the relation, the ODE is also true. we start with the relation $y^{2}-2 x^{2} y=1$ and use implicit differentiation.

$$
2 y \frac{d y}{d x}-2\left(2 x y+x^{2} \frac{d y}{d x}\right)=0
$$

It may not be possible to clearly identify the domain of definition of an implicit solution.
well isolate $\frac{d y}{d x}$.

$$
\begin{aligned}
& y \frac{d y}{d x}-2 x y-x^{2} \frac{d y}{d x}=0 \\
& \left(y-x^{2}\right) \frac{d y}{d x}=2 x y \\
& \frac{d y}{d x}=\frac{2 x y}{y-x^{2}}
\end{aligned}
$$

So the rebtion does define a solution (implicitly) to the ODE.

Function vs Solution

The interval of defintion has to be an interval.

Example: Consider the ODE $\quad y^{\prime}=-y^{2}$. A solution is $y=\frac{1}{x}$.
The interval of defintion can be

$$
(-\infty, 0) \text { or }(0, \infty)
$$

or any interval that doesn't contain the origin.
But it CAN't be $(-\infty, 0) \cup(0, \infty)$ because this isn't an interval!
Depending on other available information, we often assume $/$ is the largest (or one of the largest) possible intervals.

Function vs Solution

The graph of an ODE solution ${ }^{2}$ will not have disconnected pieces.

Figure: Left: Plot of $f(x)=\frac{1}{x}$ as a function. Right: Plot of $f(x)=\frac{1}{x}$ as a possible solution of an ODE.
${ }^{2}$ This is known as a classical solution.

Unspecified Constants in a Function
Show that for any choice of constants c_{1} and $c_{2}, y=c_{1} x+\frac{c_{2}}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

well show that $y=C_{1} x+\frac{C_{2}}{x}$ solver the ODE without putting any conditions on the numbers C_{1} and C_{2}.
we substitute:

$$
\begin{aligned}
& y=c_{1} x+c_{2} x^{-1} \\
& y^{\prime}=c_{1}-c_{2} x^{-2} \\
& y^{\prime \prime}=0+2 c_{2} x^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x y^{\prime}-y= \\
& x^{2}\left(2 c_{2} x^{-3}\right)+x\left(c_{1}-c_{2} x^{-2}\right)-\left(c_{1} x+c_{2} x^{-1}\right)= \\
& 2 c_{2} x^{-1}+c_{1} x-c_{2} x^{-1}-c_{1} x-c_{2} x^{-1}= \\
& x^{-1}\left(2 c_{2}-c_{2}-c_{2}\right)+x\left(c_{1}-c_{1}\right)= \\
& x^{-1}(0)+x(0)=0 \\
& 0=0
\end{aligned}
$$

So $y=c_{1} x+\frac{c_{2}}{x}$ solves the ODE for any pair of number c_{1}, c_{2}.

Some Terms

- A parameter is an unspecified constant such as c_{1} and c_{2} in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

Section 2: Initial Value Problems

An initial value problem consists of an ODE with a certain type of additional conditions.

Solve the equation ${ }^{3}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).

[^1]IVPs
First order case:

$$
\begin{aligned}
& \boldsymbol{r}^{s^{\zeta}} \text { order } \quad \downarrow_{\text {ore initial condition }}^{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
\end{aligned}
$$

If y solves this problem, the ODE part tells use the shape of y 's graph (via its slope). The condition $y\left(x_{0}\right)=y_{0}$ tells use the curve passes through the point $\left(x_{0}, y_{0}\right)$.

Second order case:

$$
\begin{aligned}
& \text { er case: } \varepsilon^{\text {nd }} \text { ord. } \\
& \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{2}\right), \quad y\left(x_{0}\right) \stackrel{\text { conditions }}{=} y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
\end{aligned}
$$

If y is the position of a particle at tine x, the ODE gives the particle's acceleration
$y_{0}=$ initial position and $y_{1}=$ initial velocity.

Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3
$$

we know that the solutions look lie $y=c_{1} x+\frac{c_{2}}{x}$.
we must find c_{1}, c_{2} so that $y(1)=1$ and $y^{\prime}(1)=3$.

$$
\begin{array}{ll}
y(x)=c_{1} x+\frac{c_{2}}{x} & y(1)=c_{1}(1)+\frac{c_{2}}{1}=1 \\
y^{\prime}(x)=c_{1}-\frac{c_{2}}{x^{2}} & y^{\prime}(1)=c_{1}-\frac{c_{2}}{1^{2}}=3
\end{array}
$$

be solve

$$
\begin{aligned}
& c_{1}+c_{2}=1 \\
& c_{1}-c_{2}=3
\end{aligned}
$$

add the equations

$$
\begin{aligned}
2 c_{1} & =4 \Rightarrow c_{1}=2 \\
c_{1}+c_{2} & =1 \Rightarrow c_{2}=1-c_{1}=1-2=-1
\end{aligned}
$$

The solution to the IVP is

$$
y=2 x-\frac{1}{x}
$$

Example
Part 1
Show that for any constant c the relation $x^{2}+y^{2}=c$ is an implicit solution of the ODE

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

Assuming $x^{2}+y^{2}=C$ for some number C

$$
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =0 \quad \text { solve for } \frac{d y}{d x} \\
2 y \frac{d y}{d x} & =-2 x \\
\frac{d y}{d x} & =\frac{-2 x}{2 y}=\frac{-x}{y} \quad(\text { for } y \neq 0)
\end{aligned}
$$

Example
Part 2
Use the preceding results to find an explicit solution of the IVP

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad y(0)=-2
$$

we know solutions to the ODE look like

$$
x^{2}+y^{2}=C
$$

Since $y(0)=-2, \quad 0^{2}+(-2)^{2}=C \quad \Rightarrow \quad c=4$
So $x^{2}+y^{2}=4$ is on implicit solution to the IVP.

Solving for y

$$
\begin{aligned}
y^{2}=4-x^{2} \quad \Rightarrow \quad y=\sqrt{4-x^{2}} \quad \text { or } \\
y=-\sqrt{4-x^{2}}
\end{aligned}
$$

Since $y(0)=-2$, the explicit solution is $y=-\sqrt{4-x^{2}}$

Graphical Interpretation

Figure: Each curve solves $y^{\prime}+2 x y=0, y(0)=y_{0}$. Each colored curve corresponds to a different value of y_{0}

[^0]: ${ }^{1}$ The interval is called the domain of the solution or the interval of definition.

[^1]: ${ }^{3}$ on some interval $/$ containing x_{0}.

