January 11 Math 2306 sec. 60 Spring 2019

Section 1: Concepts and Terminology

We define solutions of the nth order ODE $F(x, y, y', ..., y^{(n)}) = 0$ (*) **Definition:** A function ϕ defined on an interval¹ *I* and possessing at least *n* continuous derivatives on *I* is a **solution** of (*) on *I* if upon substitution (i.e. setting $y = \phi(x)$) the equation reduces to an identity.

Definition: An **implicit solution** of (*) is a relation G(x, y) = 0 provided there exists at least one function $y = \phi$ that satisfies both the differential equation (*) and this relation.

¹The interval is called the *domain of the solution* or the *interval of definition*.

An Implicit Solution

Verify that the relation(left) defines and implicit solution of the differential equation (right).

$$y^2 - 2x^2y = 1,$$
 $\frac{dy}{dx} = \frac{2xy}{y - x^2}$

Well show that if we assume the relation holds, then the ODE is also true. Well start with the relation and find $\frac{dy}{dx}$ using implicit differentiation,

$$\partial_y \frac{\partial y}{\partial x} - \partial \left(2xy + x^2 \frac{\partial y}{\partial x} \right) = 0$$

It may not be possible to clearly identify the domain of definition of an implicit solution.

Isolate
$$\frac{dy}{dx}$$

 $y \frac{dy}{dx} - 2xy - x^2 \frac{dy}{dx} = 0$
 $y \frac{dy}{dx} - x^2 \frac{dy}{dx} = 2xy$
 $(y - x^2) \frac{dy}{dx} = 2xy$
 $\frac{dy}{dx} = \frac{2xy}{y - x^2}$
So $y^2 - 2x^2y = 1$ defines a solution to the ODE.

January 9, 2019 3 / 36

Function vs Solution

The interval of definition has to be an interval.

Example: Consider the ODE $y' = -y^2$. A solution is $y = \frac{1}{y}$.

The interval of definition can be

$$(-\infty,0)$$
 or $(0,\infty)$

or any interval that doesn't contain the origin.

But it CAN't be $(-\infty, 0) \cup (0, \infty)$ because this isn't an interval!

Depending on other available information, we often assume *I* is the largest (or one of the largest) possible intervals.

> January 9, 2019

4/36

Function vs Solution

The graph of an ODE solution² will not have disconnected pieces.

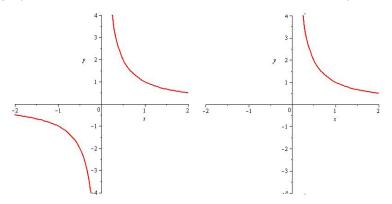


Figure: Left: Plot of $f(x) = \frac{1}{x}$ as a **function**. Right: Plot of $f(x) = \frac{1}{x}$ as a possible **solution** of an ODE.

²This is known as a *classical solution*.

Unspecified Constants in a Function

y" = 2c2 × 3

Show that for any choice of constants c_1 and c_2 , $y = c_1 x + \frac{c_2}{x}$ is a solution of the differential equation

$$x^{2}y'' + xy' - y = 0$$

We'll show that $y = C_{1} \times + \frac{C_{2}}{x}$ solves the ODE
with no conditions on the constants C_{1} and C_{2} .
 $y = C_{1} \times + C_{2} \times^{2}$
 $y' = C_{1} - C_{2} \times^{2}$

$$x^{2}y'' + xy' - y =$$

$$x^{2}(ac_{2}x^{3}) + x(c_{1} - c_{2}x^{2}) - (c_{1}x + c_{2}x^{1}) =$$

$$ac_{2}x'' + c_{1}x - c_{2}x^{1} - c_{1}x - c_{2}x^{1} =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(c_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{2} - c_{2}) + x(ac_{1} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{1} - c_{2}) + x(ac_{1} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{1} - c_{2}) + x(ac_{1} - c_{2}) + x(ac_{1} - c_{1}) =$$

$$x'(ac_{1} - c_{2}) + x(ac_{1} - c_{1}) + x($$

January 9, 2019 7 / 36

Some Terms

- ► A parameter is an unspecified constant such as c₁ and c₂ in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- ► An *n*-parameter family of solutions is one containing *n* parameters (e.g. $c_1 x + \frac{c_2}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The **trivial solution** is the simple constant function y = 0.
- An integral curve is the graph of one solution (perhaps from a family).

Section 2: Initial Value Problems

An initial value problem consists of an ODE with a certain type of additional conditions.

Solve the equation ³

$$\frac{d^{n}y}{dx^{n}} = f(x, y, y', \dots, y^{(n-1)})$$
ponditions
(1)

• • • • • • • • • •

subject to the initial conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, y^{(n-1)}(x_0) = y_{n-1}.$$
 (2)

The problem (1)–(2) is called an *initial value problem* (IVP).

January 9, 2019 9 / 36

³on some interval *I* containing x_0 .

IVPs First order case:

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

y satisfies the ODE, and its graph passes
through the point (x_0, y_0)

Second order case:
$$\int_{0}^{n_{0}} dx^{n}$$
 two conditions
 $\frac{d^{2}y}{dx^{2}} = f(x, y, y'), \quad y(x_{0}) = y_{0}, \quad y'(x_{0}) = y_{1}$
If $y_{1}(x)$ is the position of a particle @ time x
The ODE describes the acceleration
 y_{0} = initial position y_{1} = initial velocity

January 9, 2019 10 / 36

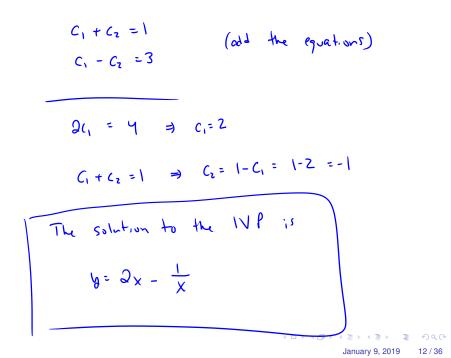
Example

Given that $y = c_1 x + \frac{c_2}{x}$ is a 2-parameter family of solutions of $x^2y'' + xy' - y = 0$, solve the IVP

$$x^2y'' + xy' - y = 0$$
, $y(1) = 1$, $y'(1) = 3$
We know that $y = C_1 \times + \frac{C_2}{\times}$. We need to find
 C_1 and C_2 such that the initial conditions are
satisfied.

$$y(x) = C_1 X + \frac{C_2}{X}$$
 $y(1) = C_1(1) + \frac{C_2}{1} = 1$
 $y'(x) = C_1 - \frac{C_2}{X^2}$ $y'(1) = C_1 - \frac{C_2}{1^2} = 3$

<ロ> <四> <四> <四> <四> <四</p>



Example

Part 1

Show that for any constant *c* the relation $x^2 + y^2 = c$ is an implicit solution of the ODE

$$\frac{dy}{dx} = -\frac{x}{y}$$
Assume $x^2 + y^2 = c$ for some C. Then
differentiating
 $2x + 2y \frac{dy}{dx} = 0$
 $\partial y \frac{dy}{dx} = -2x$
 $\frac{dy}{dx} = \frac{-2x}{2y} = \frac{-x}{y}$ for $y \neq 0$

э

イロト イポト イヨト イヨト

Example

Part 2

Use the preceding results to find an explicit solution of the IVP

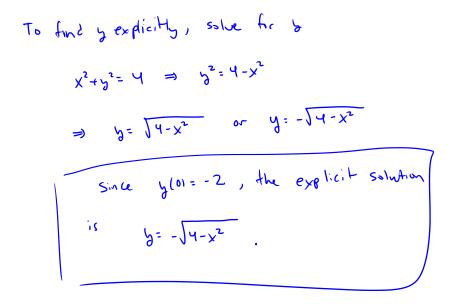
$$\frac{dy}{dx} = -\frac{x}{y}, \quad y(0) = -2$$
We know that $x^2 + y^2 = C$ definer solutions
implicitly.
We require $y(0) = -2$ so in the relation
 $0^2 + (-2)^2 = C \implies C = 4$
So $x^2 + y^2 = 4$ is an implicit solution to the WP

イロト イヨト イヨト イヨト

э

14/36

January 9, 2019



◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

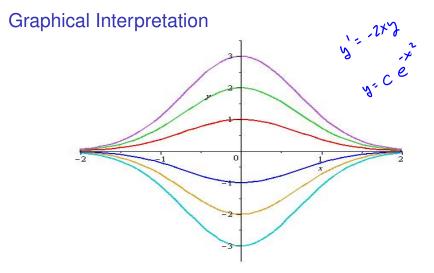


Figure: Each curve solves y' + 2xy = 0, $y(0) = y_0$. Each colored curve corresponds to a different value of y_0