January 11 Math 3260 sec. 56 Spring 2018

Section 1.1: Systems of Linear Equations

We had the following theorem on linear systems:
Theorem: A linear system of equations has exactly one of the following:
i No solution, or
ii Exactly one solution, or
iii Infinitely many solutions.

We use the terms:
Consistent if it has at least one solution, and Inconsistent if it has no solution.

Also recall...

Given a linear system, we can equate two matrices with it. The coefficient matrix, and the augmented matrix. For example

Example: $\begin{gathered}x_{1}+2 x_{2}-x_{3}=-4 \\ 2 x_{1}+x_{3}=7 \\ x_{1}+x_{2}+x_{3}=6\end{gathered}$
has coefficient matrix

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

and augmented matrix

$$
\left[\begin{array}{rrrr}
1 & 2 & -1 & -4 \\
2 & 0 & 1 & 7 \\
1 & 1 & 1 & 6
\end{array}\right]
$$

Legitimate Operations for Solving a System

We can perform three basic operation without changing the solution set of a system. These are

- swap the order of any two equations (swap),
- multiply an equation by any nonzero constant (scale), and
- replace an equation with the sum of itself and a nonzero multiple of any other equation (replace).

We said that two systems with the same solution set are called equivalent.

Some Operation Notation

Notation

- Swap equations i and j :

$$
E i \leftrightarrow E j
$$

- Scale equation i by k :

$$
k E i \rightarrow E i
$$

- Replace equation j with the sum of itself and k times equation i :

$$
k E i+E j \rightarrow E j
$$

Solve the following system of equations by elimination. Keep tabs on the augmented matrix at each step.

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-4 \\
2 x_{1} & +x_{3}
\end{aligned}=7
$$

well use the operations to eliminate some
variable r fron-some ecus.

* Caveat: I moke no cling that this is the only "right" way to do this.
lats get rid of x. in the last two equations

$$
\begin{aligned}
& D_{0} \quad-2 E_{1}+E_{2} \rightarrow E_{2} \\
& x_{1}+2 x_{2}-x_{3}=-4 \\
&-4 x_{2}+3 x_{3}=15 \\
& x_{1}+x_{2}+x_{3}=6
\end{aligned}
$$

$$
\text { Do } \begin{array}{r}
-E_{1}+E_{3} \rightarrow E_{3} \\
x_{1}+2 x_{2}-x_{3}=-4 \\
-4 x_{2}+3 x_{3}=15 \\
-x_{2}+2 x_{3}=10
\end{array} \quad\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -4 & 3 & 15 \\
0 & -1 & 2 & 10
\end{array}\right]
$$

Lets swap $E_{2} \leftrightarrow E_{3}$

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=-4 \\
-x_{2}+2 x_{3}=10 \\
-4 x_{2}+3 x_{3}=15
\end{array} \quad\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -1 & 2 & 10 \\
0 & -4 & 3 & 15
\end{array}\right]
$$

$D_{0}-4 . E_{2}+E_{3} \rightarrow E_{3}$

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-4 \\
-x_{2}+2 x_{3} & =10 \\
-5 x_{3} & =-25
\end{aligned} \quad\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & -1 & 2 & 10 \\
0 & 0 & -5 & -25
\end{array}\right]
$$

Finely, lets scale

$$
\begin{aligned}
-E_{2} \rightarrow E_{2} & \text { and }-\frac{1}{3} E_{3} \rightarrow E_{3} \\
x_{1}+2 x_{2}-x_{3} & =-4 \\
x_{2}-2 x_{3} & =-10 \\
x_{3} & =5
\end{aligned} \quad\left[\begin{array}{cccc}
1 & 2 & -1 & -4 \\
0 & 1 & -2 & -10 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

Wis x_{3} is known.
Note the trimguler Structure on the nonzero entries!
with some substitution, we get x_{2} and thin x_{1} !

From Eau 2

$$
x_{2}=-10+2 x_{3}=-10+2 \cdot 5=0
$$

Fra Eon 1

$$
x_{1}=-4-2 x_{2}+x_{3}=-4-0+5=1
$$

The solution is

$$
x_{1}=1, x_{2}=0, x_{3}=5 .
$$

we could write this as $(1,0,5)$.

Example

We used the legitimate equation operations to solve the system by eliminating some variables and then substituting. Our augmented matrix after so many steps looked like

$$
\left[\begin{array}{rrrr}
1 & 2 & -1 & -4 \\
0 & 1 & 2 & -10 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

The operations on the equations correspond to changes to the rows of the matrix. This suggests that we can do operations on the rows of matrix to get desired (legitimate) changes to the equations.

Elementary Row Operations

If any sequence of the following operations are performed on a matrix, the resulting matrix is row equivalent.
i Replace a row with the sum of itself and a multiple of another row (replacement).
ii Interchange any two rows (row swap).
iii Multiply a row by any nonzero constant (scaling).
Theorem: If the augmented matrices of two linear systems are row equivalent, then the systems have the same solution set. (i.e. The systems are equivalent!)

A key here is structure!
Consider the following augmented matrix. Determine if the associated system is consistent or inconsistent. If it is consistent, determine the solution set.

$$
3 \text { rows } \rightarrow 3 \text { ears }
$$

(a) $\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$

4 columns $\rightarrow 3$ vanicbleis
The system is

$$
\begin{gathered}
1 x_{1}+o x_{2}+0 x_{3}=3 \\
0 x_{1}+1 x_{2}+o x_{3}=1 \\
0 x_{1}+o x_{2}+1 x_{3}=-2 \\
\text { ie. } \quad x_{1}=3 \\
x_{2}=1 \\
x_{3}=-2
\end{gathered}
$$

Obviously
Consistent wal
Solution
(b) $\left[\begin{array}{cccc}1 & 0 & 2 & -5 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 3\end{array}\right]$

Bros \rightarrow Begins
4 Columns $\rightarrow 3$ vanichler
It reads as

$$
\begin{aligned}
& 1 x_{1}+0 x_{2}+2 x_{3}=-5 \\
& 0 x_{1}+1 x_{2}-1 x_{3}=4 \\
& 0 x_{1}+0 x_{2}+0 x_{3}=3
\end{aligned}
$$

The last equation is " $0=3$ ".
This is always false.
The system is inconsistent ।

Agon 3egn in 3 varicbler
(c) $\left[\begin{array}{cccc}1 & 0 & -2 & -4 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& 1 x_{1}+0 x_{2}-2 x_{3}=-4 \\
& 0 x_{1}+1 x_{2}+1 x_{3}=4 \\
& 0 x_{1}+0 x_{2}+0 x_{3}=0
\end{aligned}
$$

The last equation is " $0=0$ " which is always true!
The est two can be stated as

$$
\begin{aligned}
& x_{1}=-4+2 x_{3} \\
& x_{2}=4-x_{3}
\end{aligned}
$$

x_{3} - is ony red number
we state this as x_{3} is "free". we call x_{1} and x_{2} basic variables.

This system is consistent with infinitely many solutions,

