January 12 Math 2306 sec 59 Spring 2016

Section 1: Concepts and Terminology

Suppose $y=\phi(x)$ is a differentiable function. We know that $d y / d x=\phi^{\prime}(x)$ is another (related) function.

For example, if $y=\cos (2 x)$, then y is differentiable on $(-\infty, \infty)$. In fact,

$$
\frac{d y}{d x}=-2 \sin (2 x)
$$

Even $d y / d x$ is differentiable with $d^{2} y / d x^{2}=-4 \cos (2 x)$. Note that

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

The equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

is an example of a differential equation.

Questions: If we only started with the equation, how could we determine that $\cos (2 x)$ satisfies it? Also, is $\cos (2 x)$ the only possible function that y could be?

Definition

A Differential Equation is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

Independent Variable: will appear as one that derivatives are taken with respect to.
Dependent Variable: will appear as one that derivatives are taken of.

Classifications

Type: An ordinary differential equation (ODE) has exactly one independent variable ${ }^{1}$. For example

$$
\frac{d y}{d x}-y^{2}=3 x, \quad \text { or } \quad \frac{d y}{d t}+2 \frac{d x}{d t}=t, \quad \text { or } \quad y^{\prime \prime}+4 y=0
$$

A partial differential equation (PDE) has two or more independent variables. For example

$$
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}}, \quad \text { or } \quad \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

$$
\partial \text {-partid symbol }
$$

${ }^{1}$ These are the subject of this course.

Classifications

Order: The order of a differential equation is the same as the highest order derivative appearing anywhere in the equation.

$$
\begin{gathered}
\frac{d y}{d x}-y^{2}=3 x \\
y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}=x^{3} \quad 3^{\text {rd }} \text { order eqn. } \\
\frac{\partial y}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}} \quad \partial^{n d} \text { order eqn. }
\end{gathered}
$$

Notations and Symbols

We'll use standard derivative notations:
Leibniz: $\frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \ldots \frac{d^{n} y}{d x^{n}}, \quad$ or
Prime \& superscripts: $\quad y^{\prime}, \quad y^{\prime \prime}, \quad \ldots \quad y^{(n)}$.

Newton's dot notation may be used if the independent variable is time. For example if s is a position function, then
velocity is $\frac{d s}{d t}=\dot{s}, \quad$ and acceleration is $\frac{d^{2} s}{d t^{2}}=\ddot{s}$

Notations and Symbols

An $n^{\text {th }}$ order ODE, with independent variable x and dependent variable y can always be expressed as an equation

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

where F is some real valued function of $n+2$ variables.

Normal Form: If it is possible to isolate the highest derivative term, then we can write a normal form of the equation

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) .
$$

Example: $\quad y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}=x^{3}$

Can be written as

$$
\underbrace{y^{\prime \prime \prime}+\left(y^{\prime}\right)^{4}-x^{3}=0}_{\text {this is }} F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)
$$

This con be exposed in normal form

$$
y^{\prime \prime \prime}=-\left(y^{\prime}\right)^{4}+x^{3}
$$

Notations and Symbols

If $n=1$, an equation in normal form would look like

$$
\frac{d y}{d x}=f(x, y)
$$

If $n=2$, an equation in normal form would look like

$$
\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)
$$

Differential Form

A first order equation may appear in the form

$$
M(x, y) d x+N(x, y) d y=0
$$

Either variable could be considered independent.

$$
\begin{array}{rlrl}
N(x, y) d y & =-M(x, y) d x & M(x, y) d x & =-N(x, y) d y \\
\Downarrow & O R & \frac{d x}{d y}=\frac{-N(x, y)}{M(x, y)} \\
\frac{d y}{d x} & =-\frac{M(x, y)}{N(x, y)} & & \text { if } M(x, y) \neq 0 .
\end{array}
$$

Classifications

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

Note that each of the coefficients a_{0}, \ldots, a_{n} and the right hand side g may depend on the independent variable but not on the dependent variable or any of its derivatives.

Examples (Linear -vs- Nonlinear)

$$
\begin{array}{lll}
y^{\prime \prime}+4 y=0 & \text { linear } & t^{2} \frac{d^{2} x}{d t^{2}}+2 t \frac{d x}{d t}-x=e^{t} \\
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x) & a_{2}(t)=t^{2}, & a_{0}(t)=-1 \\
a_{2}(x)=1 & a_{0}(x)=4 & a_{1}(t)=2 t, \\
a_{1}(x)=0 & g(x)=0 &
\end{array}
$$

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{4}=x^{3} \quad \text { nonlinear } \quad u^{\prime \prime}+u^{\prime}=\underbrace{\cos u}_{\text {lir }}
$$

$$
\frac{d^{3} y}{d x^{3}}+\left(\frac{d y}{d x}\right)^{3} \frac{d y}{d x}=x^{3}
$$

Examples
Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(a) $y^{\prime \prime}+2 t y^{\prime}=\cos t+y$

Independent - t
dependent - y
$2^{\text {nd }}$ order
$y^{\prime \prime}+2 t y^{\prime}-y=\cos t \quad$ This is linear.

Examples
(b) $\frac{d^{3} y}{d x^{3}}+2 y \frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}+\tan (x)$

Independent - x dependent - y

Order $3^{\text {rd }}$

$$
\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}+\underbrace{2 y}_{\text {this }} \frac{d y}{d x}=\tan x
$$

is

Examples
(c) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant

Independent time t
Dependent θ
$2^{\text {nd }}$ arden
Non line due to $\sin \theta$ term.

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Definition: A function ϕ defined on an interval l^{2} and possessing at least n continuous derivatives on / is a solution of (*) on I if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of (${ }^{*}$) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

[^0]
[^0]: ${ }^{2}$ The interval is called the domain of the solution or the interval of definition.

