January 12 Math 2335 sec 51 Spring 2016

Section 1.1: The Taylor Polynomial

Let's begin by considering the task of evaluating a common function

$$
f(x)=e^{x} \quad \text { at some value } a \approx 0
$$

Today, we would plug the number a into a predefined operation on a calculator or computer. But we can ask the question

How does the machine, which performs the operations,,$+- \times$, and \div, evaluate such a function?

What the machine does is run algorithms to approximate answers to within an acceptable degree of accuracy.

Overview of Course Concepts

Over the span of the semester, we will investigate

- The use of Taylor polynomials to approximate more exotic functions;
- The errors that arise when using machines for computing, and how to minimize error;
- How to solve some equations (root finding) using various algorithms, and how to analyze the results;
- Various methods for interpolating data;
- Ways to integrate and to differentiate using numerical approximations, and
- How to solve linear systems using efficient and error reducing methods.

We begin with the use of Taylor polynomials...

Let $n \geq 1$ be an integer. A polynomial of degree n is a function of the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{n} \neq 0, a_{0}, \ldots, a_{n}$ are known real numbers called coefficients.
Polynomials are very special! Evaluating a polynomial can be done using only the operations of addition, subtraction, and multiplication!

In contrast, consider other operations we take for granted such as taking roots, logarithms, exponentiating, and evaluating trigonometric functions.

Task: Approximate $e^{0.1}$ using a tangent line.
Let $f(x)=e^{x}$. Since 0.1 is close to zero, we consider the tangent line to the graph of f at zero.

If we call the tangut line $p_{1}(x)$.
p_{1} has to go through the point $(0, f(0))$ and have the same slope as f (0 .

Slope $n=f^{\prime}(0)$

$$
\begin{aligned}
& f(x)=e^{x}, f^{\prime}(x)=e^{x} \\
& f(0)=e^{0}=1 \quad \text { and } \quad m=f^{\prime}(0)=e^{0}=1
\end{aligned}
$$

point $(0,1)$ and slope $m=1$

$$
p_{1}(x)-1=1(x-0) \quad \Rightarrow \quad p_{1}(x)=x+1
$$

For $\quad x \approx 0 \quad f(x) \approx P_{1}(x)$

$$
e^{0.1}=f(0.1) \approx p_{1}(0.1)=0.1+1=1.1
$$

Plot of f and p_{1}

Figure: For $x \approx 0$, the two curves are very close. Note that $p_{1}(0)=f(0)$ and $p_{1}^{\prime}(0)=f^{\prime}(0)$.

Let's improve: Approximate $e^{0.1}$ using a quadratic.
Find a second degree polynomial $p_{2}(x)$ that satisfies the three conditions

$$
p_{2}(0)=f(0), \quad p_{2}^{\prime}(0)=f^{\prime}(0), \quad \text { and } \quad p_{2}^{\prime \prime}(0)=f^{\prime \prime}(0)
$$

A generic second degree polynomial looks like

$$
\begin{array}{ll}
p_{2}(x)=a_{2} x^{2}+a_{1} x+a_{0} & f(x)=e^{x} \\
p_{2}^{\prime}(x)=2 a_{2} x+a_{1} & f^{\prime}(x)=e^{x} \\
p_{2}^{\prime \prime}(x)=2 a_{2} & f^{\prime \prime}(x)=e^{x}
\end{array}
$$

$$
\begin{array}{lll}
p_{2}(0)=a_{0} & f(0)=e^{0}=1 & p_{2}(0)=f(0) \Rightarrow \\
p_{2}^{\prime}(0)=a_{1} & a_{0}=1 \\
p_{2}^{\prime \prime}(0)=e^{\circ}=1 & p_{2}^{\prime}(0)=f^{\prime}(0) \Rightarrow & a_{1}=1 \\
& f_{2}^{\prime \prime}(0)=e^{0}=1 & p_{2}^{\prime \prime}(0)=f^{\prime \prime}(0) \Rightarrow
\end{array} 2 a_{2}=1 \Rightarrow a_{2}=\frac{1}{2}
$$

So $\quad p_{2}(x)=\frac{1}{2} x^{2}+x+1$

For $\quad x \approx 0, \quad f(x) \approx p_{2}(x)$

$$
\begin{aligned}
e^{0.1}=f(0,1) & \approx p_{2}(0.1) \\
& =\frac{1}{2}(0.1)^{2}+0.1+1 \\
& =\frac{1}{2}(0.01)+1.1 \\
& =0.005+1.1=1.105
\end{aligned}
$$

Plot of f and p_{1} and p_{2}

Figure: Plot of f, p_{1} and p_{2} together.

Taylor Polynomials

Suppose that a function f has at least n continuous derivatives on an interval $\alpha<x<\beta$, and that a is some number in this interval. Determine the coefficients $c_{0}, c_{1}, \ldots, c_{n}$ for the polynomial

$$
p_{n}(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}
$$

that satisfies the $n+1$ conditions

$$
\begin{aligned}
p_{n}(a) & =f(a) \\
p_{n}^{\prime}(a) & =f^{\prime}(a) \\
p_{n}^{\prime \prime}(a) & =f^{\prime \prime}(a) \\
& \vdots \\
p_{n}^{(n)}(a) & =f^{(n)}(a) .
\end{aligned}
$$

$$
P_{n}(a)=c_{0}+c_{1}(a-a)+C_{2}(a-a)^{2}+\ldots+c_{n}(a-a)^{n}=C_{0}=f(a)
$$

So

$$
c_{0}=f(a)
$$

$$
\begin{gathered}
P_{n}^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+\ldots+n c_{n}(x-a)^{n-1} \\
P_{n}^{\prime}(a)=c_{1}+0 \cdots P_{n}^{\prime}(a)=c_{1}=f^{\prime}(a) \\
c_{1}=f^{\prime}(a)
\end{gathered}
$$

$$
\begin{array}{r}
P_{n}^{\prime \prime}(x)=2 c_{2}+3 \cdot 2 c_{3}(x-a)+4 \cdot 3 a_{4}(x-a)^{2}+\ldots+n(n-1) c_{n}(x-a)^{n-2} \\
P_{n}^{\prime \prime}(a)=2 c_{2}=f^{\prime \prime}(a) \Rightarrow c_{2}=\frac{f^{\prime \prime}(a)}{2}=\frac{f^{\prime \prime}(a)}{2 \cdot 1}
\end{array}
$$

$$
\begin{aligned}
& P_{n}^{\prime \prime \prime}(x)=3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4}(x-a)+5 \cdot 4 \cdot 3 c_{5}(x-a)^{2}+\ldots+ \\
& \\
& +n(n-1)(n-2) c_{n}(x-a)^{n-3} \\
& P_{n}^{\prime \prime \prime \prime}(a)=3 \cdot 2 c_{3}=f^{\prime \prime \prime}(a) \Rightarrow c_{3}=\frac{f^{\prime \prime \prime}(a)}{3 \cdot 2}=\frac{f^{\prime \prime \prime}(a)}{3 \cdot 2 \cdot 1} \\
& =\frac{f^{\prime \prime \prime}(a)}{3!}
\end{aligned}
$$

we duduce

$$
c_{k}=\frac{f^{(k)}(a)}{k!}
$$

Definition: Taylor Polynomial

Suppose \boldsymbol{f} has at least \boldsymbol{n} continuous derivatives on the interval (α, β) and that a is a point in this interval. The Taylor polynomial of degree n centered at a for the function f is

$$
p_{n}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Notation: $j!$ is read " j factorial", where $0!=1$ and $j!=1 \cdot 2 \cdot 3 \cdots j$. We'll be careful to denote derivatives with parentheses $f^{(n)}$ indicates an $n^{\text {th }}$ derivative as opposed to f^{n} which is read as a power.

Example
Find the Taylor polynomial of degree 3 for $f(x)=\ln x$ centered at $a=2$.

For $a=2$

$$
P_{3}(x)=\frac{f(2)}{0!}+\frac{f^{\prime}(2)}{1!}(x-2)+\frac{f^{\prime \prime}(2)}{2!}(x-2)^{2}+\frac{f^{\prime \prime \prime}(2)}{3!}(x-2)^{3}
$$

$$
\begin{array}{ll}
f(x)=\ln x & f(2)=\ln 2 \\
f^{\prime}(x)=\frac{1}{x} & f^{\prime}(2)=\frac{1}{2} \\
f^{\prime \prime}(x)=\frac{-1}{x^{2}} & f^{\prime \prime}(2)=\frac{-1}{2^{2}}=\frac{-1}{4} \\
f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} & f^{\prime \prime \prime}(2)=\frac{2}{2^{3}}=\frac{1}{2^{2}}=\frac{1}{4}
\end{array}
$$

$$
O_{1}^{1}=1
$$

$$
1_{1}=1
$$

$$
2!=2
$$

$$
3!=6
$$

So

$$
\rho_{3}(x)=\ln 2+\frac{1}{2}(x-2)-\frac{1}{8}(x-2)^{2}+\frac{1}{24}(x-2)^{3}
$$

Plot of $\ln x$ and p_{3} centered at $a=2$

