January 12 Math 2335 sec 51 Spring 2016

Section 1.1: The Taylor Polynomial

Let's begin by considering the task of evaluating a common function

$$f(x) = e^x$$
 at some value $a \approx 0$

Today, we would plug the number *a* into a predefined operation on a calculator or computer. But we can ask the question

How does the machine, which performs the operations $+, -, \times$, and \div , evaluate such a function?

What the machine does is run algorithms to approximate answers to within an *acceptable* degree of accuracy.

Overview of Course Concepts

Over the span of the semester, we will investigate

- The use of Taylor polynomials to approximate more exotic functions;
- The errors that arise when using machines for computing, and how to minimize error;
- How to solve some equations (root finding) using various algorithms, and how to analyze the results;
- Various methods for interpolating data;
- Ways to integrate and to differentiate using numerical approximations, and
- How to solve linear systems using efficient and error reducing methods.

2/65

We begin with the use of Taylor polynomials...

Let $n \ge 1$ be an integer. A polynomial of degree n is a function of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_n \neq 0$, a_0, \ldots, a_n are known real numbers called coefficients.

Polynomials are very special! Evaluating a polynomial can be done using only the operations of **addition**, **subtraction**, and **multiplication**!

In contrast, consider other operations we take for granted such as taking roots, logarithms, exponentiating, and evaluating trigonometric functions.

Task: Approximate $e^{0.1}$ using a tangent line.

Let $f(x) = e^x$. Since 0.1 is close to zero, we consider the tangent line to the graph of *f* at zero.

f we call the tengent line
$$p_1(x)$$
.
 p_1 has to go through the point $(0, f(w))$ and
have the same slope as $f @ 0$.
Slope $m = f'(0)$
 $f(x) = e^{x}$, $f'(x) = e^{x}$
 $f(0) = e^{x} = 1$ and $m = f'(0) = e^{0} = 1$

print (0,1) and slope m=1

$$p_1(x) - 1 = 1(x - 0) \implies p_1(x) = x + 1$$

For x = 0 $f(x) \approx p_1(x)$
 $e^{0.1} = f(0.1) \approx p_1(0.1) = 0.1 + 1 = 1.1$

January 12, 2016 5 / 65

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Plot of f and p_1

Figure: For $x \approx 0$, the two curves are very close. Note that $p_1(0) = f(0)$ and $p'_1(0) = f'(0)$.

Let's improve: Approximate $e^{0.1}$ using a quadratic. Find a second degree polynomial $p_2(x)$ that satisfies the three conditions

$$p_{2}(0) = f(0), \quad p_{2}'(0) = f'(0), \quad \text{and} \quad p_{2}''(0) = f''(0).$$
generic second degree polynomial looks like
$$p_{2}(x) = a_{2} \times^{2} + a_{1} \times + a_{0} \qquad f(x) = e^{x}$$

$$p_{2}'(x) = 2a_{2} \times + a_{1} \qquad f'(x) = e^{x}$$

$$p_{2}''(x) = 2a_{2} \qquad f'''(x) = e^{x}$$

A

January 12, 2016 7 / 65

$$\begin{aligned} \rho_{2}(o) &= a_{0} & f(o) = e^{o} = 1 & \rho_{2}(o) = f(o) \Rightarrow a_{0} = 1 \\ \rho_{2}'(o) &= a_{1} & f'(o) = e^{o} = 1 & \rho_{2}'(o) = f'(o) \Rightarrow a_{1} = 1 \\ \rho_{2}''(o) &= 2a_{2} & f''(o) = e^{o} = 1 & \rho_{2}''(o) = f''(o) \Rightarrow 2a_{2} = 1 \Rightarrow a_{3} = \frac{1}{2} \end{aligned}$$

So
$$p_2(x) = \frac{1}{2}x^2 + x + 1$$

For $x \approx 0$, $f(x) \approx p_2(x)$

$$e^{0,1} = f(0,1) \approx P_{2}(0,1)$$

$$= \frac{1}{2}(0,1)^{2} + 0.1 + 1$$

$$= \frac{1}{2}(0,0) + 1.1$$

$$= 0.005 + 1.1 = 1.105$$

January 12, 2016 9 / 65

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

Plot of f and p_1 and p_z

Figure: Plot of f, p_1 and p_2 together.

Taylor Polynomials

Suppose that a function *f* has at least *n* continuous derivatives on an interval $\alpha < x < \beta$, and that *a* is some number in this interval. Determine the coefficients c_0, c_1, \ldots, c_n for the polynomial

$$p_n(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots + c_n(x-a)^n$$

that satisfies the n + 1 conditions

$$p_n(a) = f(a)$$

 $p'_n(a) = f'(a)$
 $p''_n(a) = f''(a)$
 \vdots
 $p_n^{(n)}(a) = f^{(n)}(a).$

$$P_{n}(a) = c_{0} + c_{1}(a-a) + c_{2}(a-a)^{2} + \dots + c_{n}(a-a)^{2} = c_{0} = f(a)$$
So
$$C_{0} = f(a)$$

$$P_{n}^{1}(x) = c_{1} + 2c_{2}(x-a) + 3c_{3}(x-a)^{2} + \dots + nc_{n}(x-a)^{n-1}$$

$$P_{n}^{1}(a) = c_{1} + 0 + \cdots \implies P_{n}^{1}(a) = c_{1} = f'(a)$$

$$C_{1} = f'(a)$$

$$P_{n}^{1}(x) = 2c_{2} + 3\cdot 2c_{3}(x-a) + 4\cdot 3a_{4}(x-a)^{2} + \dots + n(n-1)c_{n}(x-a)^{n-1}$$

 $\rho_{n}^{\prime\prime}(a) = 2c_{2} = f^{\prime\prime}(a) \Rightarrow$

January 12, 2016 12 / 65

f (a)

$$\begin{aligned}
P_{n}^{"''}(x) &= 3 \cdot 2 c_{3} + 4 \cdot 3 \cdot 2 c_{4} (x - a) + 5 \cdot 4 \cdot 3 c_{5} (x - a)^{2} + \dots + \\
&+ n(n-1)(n-2) C_{n} (x - a)^{n-3} \\
P_{n}^{"''}(a) &= 3 \cdot 2 c_{3} = f^{"''}(a) \implies C_{3} = \frac{f^{"''}(a)}{3 \cdot 2} = \frac{f^{"''}(a)}{3 \cdot 2 \cdot 1} \\
&= \frac{f^{"''}(a)}{3!} \\
& \text{ we duduce} \\
C_{k} &= \frac{f_{k}^{(k)}}{k!} \\
& C_{k} &= \frac{f_{k}^{(k)}}{k!} \\
& \text{ or equation is a set of a$$

January 12, 2016 13 / 65

Definition: Taylor Polynomial

Suppose f has at least n continuous derivatives on the interval (α, β) and that a is a point in this interval. The Taylor polynomial of degree n centered at *a* for the function *f* is

$$p_n(x) = \frac{f(a)}{0!} + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Notation: *j*! is read "*j* factorial", where 0! = 1 and $j! = 1 \cdot 2 \cdot 3 \cdots j$. We'll be careful to denote derivatives with parentheses $f^{(n)}$ indicates an n^{th} derivative as opposed to f^n which is read as a power.

> January 12, 2016

15/65

Example

Find the Taylor polynomial of degree 3 for $f(x) = \ln x$ centered at a = 2.

For a=2 $p_3(x) = \frac{f(z)}{2!} + \frac{f'(z)}{1!}(x-z) + \frac{f''(z)}{z!}(x-z)^2 + \frac{f'''(z)}{3!}(x-z)^3$ 0, = 7 f(2)= ln2 f(x) = hx f'(z)= -1.=1. f'(x) = + $f''(z) = \frac{-1}{2^2} = \frac{-1}{4}$ 21 = 2 $f''(x) = \frac{-1}{\sqrt{2}}$ 31 = 6 $f'''(z) = \frac{2}{2^3} = \frac{1}{2^2} = \frac{1}{4}$ $f'''(x) = \frac{2}{\sqrt{3}}$ January 12, 2016 16/65

So
$$p_3(x) = l_n 2 + \frac{1}{2}(x-2) - \frac{1}{8}(x-2)^2 + \frac{1}{24}(x-2)^3$$

◆□▶ ◆●▶ ◆ ■▶ ◆ ■ → ○へで January 12, 2016 17 / 65

Plot of $\ln x$ and p_3 centered at a = 2

January 12, 2016 19 / 65