January 13 MATH 1112 sec. 54 Spring 2020

Basic Graph Transformations

From a small library of known function plots, we can graph a variety of functions if they can be determined as simple tranformations. We'll consider the following transformations:

- Translations shifting a graph up or down (vertical) or to the left or right (horizontal)
- Reflections taking the mirror image in the x or y axis
- Scaling stretching or shriking a graph in either of the vertical or horizontal orientations

Let's Explore Some Translations

Figure: The plot of $y=f(x)$ is shown along with a table of some select points. We will consider the effect on the graph of various translations on this function.

Vertical Translation: $y=f(x)+b$ or $y=f(x)-b$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(x)+1$ (red) Right: $y=f(x)$ (blue dots), compared to $y=f(x)-1$ (red)

Horizontal Translation: $y=f(x-d)$ or $y=f(x+d)$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(x-1)$ (red) Right: $y=f(x)$ (blue dots), compared to $y=f(x+1)$ (red)

Vertical and Horizontal Translations

For $b>0$ and $d>0$

- the graph of $y=f(x)+b$ is the graph of $y=f(x)$ shifted up b units,
- the graph of $y=f(x)-b$ is the graph of $y=f(x)$ shifted down b units,
- the graph of $y=f(x-d)$ is the graph of $y=f(x)$ shifted right d units,
- the graph of $y=f(x+d)$ is the graph of $y=f(x)$ shifted left d units,

Question

The blue dotted curve is $\mathrm{y}=\mathrm{g}(\mathrm{x})$. The red solid curve is the graph of $y=$
(a) $g(x-2)+1$
(b) $g(x+2)+1$
(c) $g(x-2)-1$
(d) $g(x+2)-1$
(e) can't be determined without more information

Reflections: $y=f(-x)$ or $y=-f(x)$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(-x)$ (red) Right: $y=f(x)$ (blue dots), compared to $y=-f(x)$ (red)

Reflection in the coordinate axes

The graph of $y=f(-x)$ is the reflection of the graph of $y=f(x)$ across the y-axis.

The graph of $y=-f(x)$ is the reflection of the graph of $y=f(x)$ across the x-axis.

Note that if (a, b) is a point on the graph of $y=f(x)$, then
(1) the point $(-a, b)$ is on the graph of $y=f(-x)$, and
(2) the point $(a,-b)$ is on the graph of $y=-f(x)$.

Question

The blue dashed curve is $y=h(x)$. The solid red curve is a plot of
(a) $y=-h(x)$
(b) $y=h(x-2)$
(c) $y=h(-x)$
(d) Can't be determined without more information.

Stretching and Shrinking

Since we already know that introducing a minus sign as in $f(-x)$ and $-f(x)$ results in a reflection, let's consider a positive number a and investigate the relationship between the graph of $y=f(x)$ and each of

$$
y=a f(x), \quad \text { and } \quad y=f(a x)
$$

The first outcome depends on whether $a>1$ or $0<a<1$.

Why aren't we bothering with the case $a=1$?

Vertical Stretch or Shrink: $y=a f(x)$

Figure: $y=f(x)$ is in blue, and $y=2 f(x)$ is in red. Since $a=2>1$, the graph is stretched vertically.

Vertical Stretch or Shrink: $y=a f(x)$

x	$f(x)$
-2	0
-1	1
0	0
1	2
2	$\frac{3}{2}$
3	1

x	$\frac{1}{2} f(x)$
-2	0
-1	$1 / 2$
0	0
1	1
2	$3 / 4$
3	$1 / 2$

$$
\text { Thalred } T
$$

$$
v^{\prime}
$$

Figure: $y=f(x)$ is in blue, and $y=\frac{1}{2} f(x)$ is in red. Since $a=\frac{1}{2}<1$, the graph is shrinked vertically.

Vertical Stretch or Shrink: $y=a f(x)$

The graph of $y=a f(x)$ is obtained from the graph of $y=f(x)$. If $a>0$, then
$y=a f(x)$ is stretched vertically if $a>1$, and $y=a f(x)$ is shrunk (a.k.a. compressed) vertically if $0<a<1$.

If $a<0$, then the stretch $(|a|>1)$ or shrink $(0<|a|<1)$ is combined with a reflection in the x-axis.

Horizontal Stretch or Shrink: $y=f(a x)$

Figure: $y=f(x)$ is in blue dots. The compressed red curve is $y=f(2 x)$, and the stretched black curve is $y=f\left(\frac{1}{2} x\right)$.

Horizontal Stretch or Shrink: $y=f(a x)$

The examples given generalize except that we did not consider an example with $a<0$. This combines the stretch/shrink with a reflection. We have the following result:

The graph of $y=f(a x)$ is obtained from the graph of $y=f(x)$. If $a>0$, then
$y=f(a x)$ is shrunk (a.k.a. compressed) horizontally if $a>1$, and $y=f(a x)$ is stretched horizontally if $0<a<1$.

If $a<0$, then the shrink $(|a|>1)$ or stretch $(0<|a|<1)$ is combined with a reflection in the y-axis.

Symmetry

For a function or a relation given in terms of algebraic expressions, we can check for symmetry:

- y-axis (Even) if replacing (x, y) with $(-x, y)$ results in the same formula (e.g. $f(-x)=f(x)$)
- Origin (Odd): if replacing (x, y) with $(-x,-y)$ results in the same foruma (e.g. $f(-x)=-f(x))$
- x-axis: if replacing (x, y) with $(x,-y)$ results in the same formula.

Even and Odd Functions

Definition: If a function f is called an even function if

$$
f(-x)=f(x)
$$

for each x in its domain. We can say that such a function has even symmetry.
the graph of f is its own reflection in the y-axis!
Definition: If a function f is called an odd function if

$$
f(-x)=-f(x)
$$

for each x in its domain. We can say that such a function has odd symmetry.
the reflection of f in the y-axis is its reflection in the x-axis!

Even Symmetry

Figure: Graph is its reflection in the y-axis

Odd Symmetry

Figure: The point $(x, f(x))$ has reflection $(-x,-f(x))$ on the graph.

x-axis Symmetry

Figure: Graph is its reflection in the x-axis.

