January 14 Math 2306 sec. 54 Spring 2019

Section 2: Initial Value Problems

An initial value problem consists of an ODE with a certain type of additional conditions.

Solve the equation ${ }^{1}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).
${ }^{1}$ on some interval / containing x_{0}.

Example
Part 1: Verify that $x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$ is a 2-parameter family of solutions of the ODE

$$
x^{\prime \prime}+4 x=0
$$

$$
\begin{aligned}
& x=c_{1} \cos (2 t)+c_{2} \sin (2 t) \\
& x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \\
& x^{\prime \prime}=-4 c_{1} \cos (2 t)-4 c_{2} \sin (2 t)
\end{aligned}
$$

Substitute

$$
x^{\prime \prime}+4 x=-4 c_{1} \cos (2 t)-4 c_{2} \sin (2 t)+4\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)=
$$

$$
\begin{aligned}
& =-4 c_{1} \cos (2 t)-4 c_{2} \sin (2 t)+4 c_{1} \cos (2 t)+4 c_{2} \sin (2 t) \\
& =\cos (2 t)\left(-4 c_{1}+4 c_{1}\right)+\sin (2 t)\left(-4 c_{2}+4 c_{2}\right) \\
& =0+0=0
\end{aligned}
$$

So $x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$ is a 2 .parameter family of solutions.

Example
Part 2: Find a solution of the IVP

$$
x^{\prime \prime}+4 x=0, \quad x\left(\frac{\pi}{2}\right)=-1, \quad x^{\prime}\left(\frac{\pi}{2}\right)=4
$$

We know that $x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$. Impose the initial conditions.

$$
\begin{aligned}
& x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \\
& x\left(\frac{\pi}{2}\right)=c_{1} \cos \left(2 \cdot \frac{\pi}{2}\right)+c_{2} \sin \left(2 \cdot \frac{\pi}{2}\right)=-1 \\
& c_{1}(-1)+c_{2}(0)=-1 \quad \Rightarrow c_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime}\left(\frac{\pi}{2}\right)=-2 c_{1} \sin \left(2 \cdot \frac{\pi}{2}\right)+2 c_{2} \cos (2 \cdot \pi / 2) & =4 \\
-2 c_{1}(0)+2 c_{2}(-1)=4 & \Rightarrow c_{2}=-2
\end{aligned}
$$

The solution to the IVP is

$$
x=\cos (2 t)-2 \sin (2 t)
$$

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are
(1) Does an IVP have a solution? (existence) and
(2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve $\underbrace{\left(\frac{d y}{d x}\right)^{2}+1}_{\geqslant 1}=-\underbrace{-y^{2}}$.

Uniqueness

Consider the IVP

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Verify that $y=\frac{x^{4}}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.

Solving an IVP means satisfying a differential equation AND satisfying an initial condition.

Show that $y=\frac{x^{4}}{16}$ satisfies the initial condition: when $x=0, y=0$

$$
y(0)=\frac{0^{4}}{16}=\frac{0}{16}=0 \quad y \text { does satirts the IC. }
$$

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Show that $y=\frac{x^{4}}{16}$ solves the differential equation:

$$
\begin{aligned}
y=\frac{x^{4}}{16} \Rightarrow \frac{d y}{d x}=\frac{4 x^{3}}{16} & =\frac{x^{3}}{4} \text { and } \sqrt{y}=\sqrt{\frac{x^{4}}{16}}=\frac{\left|x^{2}\right|}{4}=\frac{x^{2}}{4} \\
\frac{d y}{d x} & =x \sqrt{y} \\
\frac{x^{3}}{4} & =x\left(\frac{x^{2}}{4}\right) \Rightarrow \frac{x^{3}}{4}=\frac{x^{3}}{4} \text { tree }
\end{aligned}
$$

$y=\frac{x^{4}}{16}$ is a solution to the IVP.

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Find another solution to the IVP. (Hint: Think about really simple functions like a constant function.)
$y(x)=0$ is a solution.
Note $y=0 \Rightarrow \frac{d y}{d x}=0$ and $x \sqrt{y}=x \sqrt{0}=0$

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x)
$$

For example, solve the ODE

$$
\begin{aligned}
\frac{d y}{d x}=4 e^{2 x}+1 . \quad & =\int\left(4 e^{2 x}+1\right) d x \\
& =2 e^{2 x}+x+C
\end{aligned}
$$

This is a one parameter family of solutions.

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y \quad$ This is sepanoble.

$$
g(x)=x^{3} \text { and } h(y)=y
$$

(b) $\frac{d y}{d x}=2 x+y \quad$ This is not sepanohle. Note for example $2 x+y=x\left(2+\frac{y}{x}\right)$

