January 14 Math 2306 sec 58 Spring 2016

Section 1: Concepts and Terminology

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$
Definition: A function ϕ defined on an interval I^{1} and possessing at least n continuous derivatives on $/$ is a solution of (${ }^{*}$) on $/$ if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of (${ }^{*}$) is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

[^0]Examples:
Verify that the given function is an solution of the ODE on the indicated interval.

$$
\phi(x)=5 \tan (5 x), \quad I=\left(-\frac{\pi}{10}, \frac{\pi}{10}\right), \quad y^{\prime}-25=y^{2}
$$

Recall : $\tan \theta$ is cont and differentiable if

$$
\begin{aligned}
-\frac{\pi}{2}<\theta<\frac{\pi}{2} \quad \text { If } \quad-\frac{\pi}{2}<5 x<\frac{\pi}{2} \text { then } \\
-\frac{\pi}{10}<x<\frac{\pi}{10}
\end{aligned}
$$

so ϕ is differentiable on $\left(-\frac{\pi}{10}, \frac{\pi}{10}\right)$.

Let $y=5 \tan (5 x)$ then $y^{\prime}=5 \sec ^{2}(5 x) \cdot 5=25 \sec ^{2}(5 x)$

The ODE is $\quad y^{\prime}-25=y^{2}$

$$
\begin{aligned}
y^{\prime}-25=25 \sec ^{2}(5 x)-25 & \stackrel{?}{=} y^{2}=(5 \tan (5 x))^{2} \\
25\left(\sec ^{2}(5 x)-1\right) & \stackrel{?}{=} 25 \tan ^{2}(5 x)
\end{aligned}
$$

Recall $\sec ^{2} \theta=\tan ^{2} \theta+1 \Rightarrow \sec ^{2} \theta-1=\tan ^{2} \theta$
S.

$$
25 \tan ^{2}(5 x)=25 \tan ^{2}(5 x)
$$

This is on identity (ie. true for x in $\begin{aligned} & \text { all }\end{aligned}$

Examples:
Verify that the relation defines and implicit solution of the differential equation.

$$
y^{2}-2 x^{2} y=1, \quad 2 x y d x+\left(x^{2}-y\right) d y=0
$$

we can write the $D E$ in normal form:

$$
\left(x^{2}-y\right) d y=-2 x y d x \Rightarrow \frac{d y}{d x}=\frac{-2 x y}{x^{2}-y} \text { for } x^{2}-y \neq 0
$$

Well use implicit differentiation to find $\frac{d y}{d x}$ from

$$
y^{2}-2 x^{2} y=1
$$

$$
\begin{aligned}
2 y \frac{d y}{d x}-2\left(2 x y+x^{2} \frac{d y}{d x}\right) & =0 \\
y \frac{d y}{d x}-2 x y-x^{2} \frac{d y}{d x} & =0 \\
\left(y-x^{2}\right) \frac{d y}{d x} & =2 x y \\
\frac{d y}{d x} & =\frac{2 x y}{y-x^{2}}=\frac{-2 x y}{x^{2}-y}
\end{aligned}
$$

which matches the given ODE.

Function vs Solution

The interval of defintion has to be an interval.

Consider $y^{\prime}=-y^{2}$. Clearly $y=\frac{1}{x}$ solves the DE. The interval of defintion can be $(-\infty, 0)$, or $(0, \infty)$-or any interval that doesn't contain the origin. But it can't be $(-\infty, 0) \cup(0, \infty)$ because this isn't an interva!!

Often, we'll take / to be the largest, or one of the largest, possible interval. It may depend on other information.

Figure: Left: Plot of $f(x)=\frac{1}{x}$ as a function. Right: Plot of $f(x)=\frac{1}{x}$ as a possible solution of an ODE.

Solutions with Parameters (unspecified constants)
Show that for any choice of constants c_{1} and $c_{2}, y=c_{1} x+\frac{c_{2}}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

$$
\begin{aligned}
& y=c_{1} x+\frac{c_{2}}{x} \\
& y^{\prime}=c_{1}+\frac{-c_{2}}{x^{2}} \\
& y^{\prime \prime}=\frac{2 c_{2}}{x^{3}}
\end{aligned}
$$

$$
\begin{gathered}
x^{2} y^{\prime \prime}+x y^{\prime}-y= \\
x^{2}\left(\frac{2 c_{2}}{x^{3}}\right)+x\left(c_{1}-\frac{c_{2}}{x^{2}}\right)-\left(c_{1} x+\frac{c_{2}}{x}\right)= \\
\frac{2 c_{2}}{x}+c_{1} x-\frac{c_{2}}{x}-c_{1} x-\frac{c_{2}}{x} \\
=0 \quad \text { as require }
\end{gathered}
$$

Some Terms

- A parameter is an unspecified constant such as c_{1} and c_{2} in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

Section 2: Initial Value Problems IV P

An initial value problem consists of an ODE with additional conditions.

Solve the equation ${ }^{2}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).

$$
y \text { and it's derivatives an all given at the same } x_{0}
$$

${ }^{2}$ on some interval / containing x_{0}.

First order case:

Second order case:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
\end{aligned}
$$

Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3
$$

Since all solutions look like $y=c_{1} x+\frac{c_{2}}{x}$ we need to find c_{1}, c_{2} that satisfy the Initial conditions.

Impose $y(1)=1 \quad y(1)=c_{1}(1)+\frac{c_{2}}{1}=1$

$$
\text { ie. } \quad c_{1}+c_{2}=1
$$

Recall $y^{\prime}=c_{1}-\frac{c_{2}}{x^{2}}$
Impose $\quad y^{\prime}(1)=3 \quad y^{\prime}(1)=c_{1}-\frac{c_{2}}{1^{2}}=3$

$$
\text { ie. } \quad c_{1}-c_{2}=3
$$

we need $\left.\quad \begin{array}{l}c_{1}+c_{2}=1 \\ c_{1}-c_{2}=3\end{array}\right\} \Rightarrow \begin{gathered}\text { add }\end{gathered} 2 C_{1}=4 \Rightarrow c_{1}=2$ $c_{1}-c_{2}=3$
sub into eqn, 1

$$
2+c_{2}=1 \Rightarrow c_{2}=-1
$$

$$
\left(\begin{array}{l}
\text { The solution to the IVP } \\
\text { is } \quad y=2 x-\frac{1}{x} .
\end{array}\right.
$$

Example
Part 1
Show that for any constant c the relation $x^{2}+y^{2}=c$ is an implicit solution of the ODE

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

Use implicit differentiation: $\quad x^{2}+y^{2}=C$

$$
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =0 \\
2 y \frac{d y}{d x} & =-2 x \Rightarrow \frac{d y}{d x}=\frac{-2 x}{2 y} \Rightarrow \frac{d y}{d x}=\frac{-x}{y}
\end{aligned}
$$

Example
Part 2
Use the preceding results to find an explicit solution of the IVP

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad y(0)=-2
$$

From part 1, solutions satisfy the relation

$$
x^{2}+y^{2}=C
$$

The condition $y(0)=-2$ tells us that the point $(0,-2)$ is on the graph of y.
so $0^{2}+(-2)^{2}=C \Rightarrow C=4$

So our solution solves

$$
x^{2}+y^{2}=4
$$

Let's solve for y : $\quad y^{2}=4-x^{2}$
we have 2 possibilities

$$
\begin{aligned}
& y=\sqrt{4-x^{2}} \\
& y=-\sqrt{4-x^{2}}
\end{aligned}
$$

Since $y(0)=-2$, the bottom one is correct

$$
y=-\sqrt{4-x^{2}}
$$

Graphical Interpretation

Figure: Each curve solves $y^{\prime}+2 x y=0, y(0)=y_{0}$. Each colored curve corresponds to a different value of y_{0}

Example
$x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$ is a 2-parameter family of solutions of the ODE $x^{\prime \prime}+4 x=0$. Find a solution of the IVP

$$
x^{\prime \prime}+4 x=0, \quad x\left(\frac{\pi}{2}\right)=-1, \quad x^{\prime}\left(\frac{\pi}{2}\right)=4
$$

The solution has the form $x=c_{1} \cos 2 t+c_{2} \sin 2 t$

$$
x^{\prime}=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t
$$

Impose $x\left(\frac{\pi}{2}\right)=-1 \quad x\left(\frac{\pi}{2}\right)=c_{1} \cos \left(2 \cdot \frac{\pi}{2}\right)+c_{2} \sin \left(2 \cdot \frac{\pi}{2}\right)=-1$

$$
-c_{1}+c_{2} \cdot 0=-1 \Rightarrow c_{1}=1
$$

Impose $x^{\prime}\left(\frac{\pi}{2}\right)=4$

$$
\begin{array}{r}
x^{\prime}\left(\frac{\pi}{2}\right)=-2 \sin \left(2 \cdot \frac{\pi}{2}\right)+2 c_{2} \cos \left(2 \cdot \frac{\pi}{2}\right)=4 \\
0+2 c_{2} \cdot(-1)=4 \Rightarrow c_{2}=-2
\end{array}
$$

The solution to the IJP is

$$
x=\cos 2 t-2 \sin 2 t
$$

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are
(1) Does an IVP have a solution? (existence) and
(2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve $\left(\frac{d y}{d x}\right)^{2}+1=-y^{2}$.

Uniqueness
Consider the IVP

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Verify that $y=\frac{x^{4}}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.

Lat's verity that $y=\frac{x^{4}}{16}$ solves the $1 J P$,

- It satisfies $y(0)=0$? $y(0)=\frac{0^{4}}{16}=0 \quad y^{p}$
- If satisfies the ODE?

$$
y=\frac{x^{4}}{16} \Rightarrow y^{\prime}=\frac{4 x^{3}}{16}=\frac{x^{3}}{4}
$$

Note $x \sqrt{y}=x \sqrt{\frac{x^{4}}{16}}=x \frac{x^{2}}{4}=\frac{x^{3}}{4}$
s. $\quad \frac{d y}{d x}=\frac{x^{3}}{4}=x \sqrt{y}$

So $y=\frac{x^{4}}{16}$ solves the $I V P$.
$2^{n)}$ sol: $\quad \frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0$
is there a constant soln? Does $y=0$ solve it?
If $y=0$, then $y(0)=0$. And $\frac{d y}{d x}=0=x \sqrt{0}$
A second solution is the constant $y=0$.

[^0]: ${ }^{1}$ The interval is called the domain of the solution or the interval of definition.

