January 14 Math 2306 sec 59 Spring 2016

Section 1: Concepts and Terminology

Solution of $F(x, y, y', ..., y^{(n)}) = 0$ (*)

Definition: A function ϕ defined on an interval I^1 and possessing at least *n* continuous derivatives on *I* is a **solution** of (*) on *I* if upon substitution (i.e. setting $y = \phi(x)$) the equation reduces to an identity.

Definition: An **implicit solution** of (*) is a relation G(x, y) = 0 provided there exists at least one function $y = \phi$ that satisfies both the differential equation (*) and this relation.

¹The interval is called the *domain of the solution* or the *interval of definition*.

Examples:

Verify that the given function is an solution of the ODE on the indicated interval.

$$\phi(t) = 3e^{2t}, \quad I = (-\infty, \infty), \quad \frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$$
Note that $\phi(t) = 3e^{2t}$ has at least 2 derivatives
on $(-\infty, \infty)$.
Set $y = \phi(t)$ i.e. $y = 3e^{2t}$
Note $y' = 6e^{2t}$ and $y'' = 12e^{2t}$

Substitute
$$y'' - y' - 2y =$$

 $12e^{2t} - 6e^{2t} - 2(3e^{2t}) =$
 $12e^{2t} - 6e^{2t} - 6e^{2t} = 0$
Hence $\phi(t) = 3e^{2t}$ is a solution.

▲ロト ◆ ● ト ◆ ● ト ● ● ⑦ へ ○
January 12, 2016 3 / 42

Examples:

$$\phi(x) = 5\tan(5x), \quad I = \left(-\frac{\pi}{10}, \frac{\pi}{10}\right), \quad y' - 25 = y^2$$

$$\tan \Theta \quad \text{is continuous ond differentiable if}$$

$$-\frac{\pi}{2} < \Theta < \frac{\pi}{2} \quad \text{Nole} : \quad \text{if} \quad -\frac{\pi}{10} < x < \frac{\pi}{10}$$

$$\text{then} \quad s \cdot -\frac{\pi}{10} < Sx < s \cdot \frac{\pi}{10}$$

$$i.e. \quad -\frac{\pi}{2} < Sx < \frac{\pi}{2}$$

$$So \quad \Phi \text{ is at least one time differentiable on } T,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Set
$$y = 5 \operatorname{trn}(5x) \implies y' = 5 \operatorname{Sec}^{2}(5x) \cdot 5 = 25 \operatorname{Sec}^{2}(5x)$$

 $\operatorname{Substitute}$
 $y' = 25 = 25 \operatorname{Sec}^{2}(5x) - 25 \stackrel{?}{=} y^{2} = (5 \operatorname{trn}(5x))^{2}$
 $\operatorname{QS}(\operatorname{Sec}^{2}(5x) - 1) \stackrel{?}{=} 25 \operatorname{trn}^{2}(5x)$
 Iecall that $\operatorname{trn}^{2}0 + 1 = \operatorname{Sec}^{2}0$
 $\implies \operatorname{trn}^{2}0 = \operatorname{Sec}^{2}0 - 1$
Thus $y' - 25 = 25 \operatorname{trn}^{2}(5x) = y^{2}$ as $\operatorname{reguined}^{2}$

◆□▶ ◆●▶ ◆ ■▶ ◆ ■ → ○へ ○ January 12, 2016 5 / 42

Examples:

Verify that the relation defines and implicit solution of the differential equation.

$$y^2 - 2x^2y = 1$$
, $2xy \, dx + (x^2 - y) \, dy = 0$

L'éll put the ODE in normal form:

$$(x^2 - y) dy = -2xy dx \Rightarrow \frac{dy}{dx} = \frac{-2xy}{x^2 - y} \quad for$$

Let's find
$$\frac{dy}{dx}$$
 from $y^2 - 2x^2y = 1$ by implicit
different intion.
 $\partial y \frac{dy}{dx} - 2(2xy + x^2 \frac{dy}{dx}) = 0$

Isolate dy : $y \frac{dy}{dx} - 2xy - x^2 \frac{dy}{dx} = 0$ $(y - x^2) \frac{dy}{dx} = 2xy$ for $y - x^2 \neq 0$ $\frac{dy}{dx} = \frac{2xy}{y - x^2}$ $\frac{dy}{dx} = \frac{-2x_5}{x^2 - 7} \quad \text{which} \\ \text{matches} \\ \text{the ODE} .$

Function vs Solution

The interval of definition has to be an interval.

Consider $y' = -y^2$. Clearly $y = \frac{1}{y}$ solves the DE. The interval of definition can be $(-\infty, 0)$, or $(0, \infty)$ —or any interval that doesn't contain the origin. But it can't be $(-\infty, 0) \cup (0, \infty)$ because this isn't an interval!

> January 12, 2016

8/42

Often, we'll take I to be the largest, or one of the largest, possible interval. It may depend on other information.

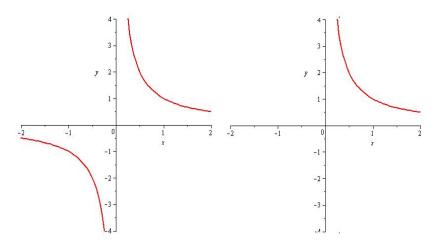


Figure: Left: Plot of $f(x) = \frac{1}{x}$ as a **function**. Right: Plot of $f(x) = \frac{1}{x}$ as a possible **solution** of an ODE.

Solutions with Parameters (unspecified constants) Show that for any choice of constants c_1 and c_2 , $y = c_1 x + \frac{c_2}{x}$ is a solution of the differential equation

$$x^2y'' + xy' - y = 0$$

Sub. into the ODE

$$y^{2} = C_{1} \times + \frac{C_{2}}{X}$$

$$y' = C_{1} - \frac{C_{2}}{X^{2}}$$

$$y'' = \frac{2C_{2}}{X^{3}}$$

$$x^{2}y'' + \chi y' - \gamma = x$$

$$x^{1}(\frac{2C_{2}}{X^{3}}) + \chi(C_{1} - \frac{C_{2}}{X^{2}}) - (C_{1} \times + \frac{C_{2}}{X}) = x$$

$$y'' = \frac{2C_{2}}{X^{3}}$$

$$0 = 0$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Some Terms

- ► A parameter is an unspecified constant such as c₁ and c₂ in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- ► An *n*-parameter family of solutions is one containing *n* parameters (e.g. $c_1 x + \frac{c_2}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The **trivial solution** is the simple constant function y = 0.
- An integral curve is the graph of one solution (perhaps from a family).

January 12, 2016

Section 2: Initial Value Problems 194

An initial value problem consists of an ODE with additional conditions.

Solve the equation ²

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$
(1)

subject to the initial conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, y^{(n-1)}(x_0) = y_{n-1}.$$
 (2)

The problem (1)-(2) is called an *initial value problem* (IVP). Note that $y, y', ..., y^{(n-1)}$ are all given at the same $\chi = \chi_0$.

²on some interval *I* containing x_0 .

January 12, 2016 13 / 42

BARABA B 9900

First order case:

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

(one condition

(one condition

(or land)

Second order case:

١

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(x_0) = y_0, \quad y'(x_0) = y_1$$

$$\int_0^{x_0^2} \int_0^{y_0^2} \int$$

January 12, 2016

2

Given that $y = c_1 x + \frac{c_2}{x}$ is a 2-parameter family of solutions of $x^2y'' + xy' - y = 0$, solve the IVP

$$x^{2}y'' + xy' - y = 0, \quad y(1) = 1, \quad y'(1) = 3$$

The solution has the form
$$y = C_1 \times + \frac{C_2}{X}$$

recall $y' = C_1 - \frac{C_2}{X^2}$

Impose the condition
$$y(1) = 1$$

 $y(1) = C_1 \cdot 1 + \frac{C_2}{1} = 1 \Rightarrow C_1 + C_2 = 1$

<ロ> <四> <四> <四> <四> <四</p>

January 12, 2016 15 / 42

Impose the condition
$$g'(1)=3$$

 $g'(1)=(1, -\frac{c_2}{1^2}=3)$ $(1-c_2=3)$
We require $c_1+c_2=1$ $g_{=}^{add}$ $\partial(1=4)$ $c_1=2$
 $c_1-c_2=3$ $g_{=}^{add}$ $\partial(1=4)$ $c_1=2$
 g_{+}^{add} g_{+}^{add

January 12, 2016 16 / 42

Part 1

Show that for any constant *c* the relation $x^2 + y^2 = c$ is an implicit solution of the ODE

$$\frac{\partial y}{\partial x} = -\frac{x}{y}$$
Find $\frac{\partial y}{\partial x}$ using implicit diff: $x^2 + y^2 = C$
 $2x + 2y \frac{\partial x}{\partial x} = 0 \implies \partial y \frac{\partial y}{\partial x} = -2x$
 $\frac{\partial y}{\partial x} = \frac{-2x}{2y} \implies \frac{\partial y}{\partial x} = -\frac{x}{y}$
So the relation defines an implicit solution.

Part 2

Use the preceding results to find an explicit solution of the IVP

$$\frac{dy}{dx} = -\frac{x}{y}, \quad y(0) = -2$$

From part 1, if y solver the OD E then
 $x^2 + y^2 = C$
 $y(0) = -2$ implies that $0^2 + (-2)^2 = C$
 $H = C$

January 12, 2016 18 / 42

э

イロン イ理 とく ヨン イヨン

Our solution must satisfy
$$x^2 ty^2 = 4$$

Find an explicit solution:
 $y^2 = 4 - x^2$
So either $y = \sqrt{4 - x^2}$ or $y = -\sqrt{4 - x^2}$
Since $y(0) = -2$ our solution to the $1\sqrt{10}$ is
 $y = -\sqrt{4 - x^2}$.

January 12, 2016 19 / 42

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ ○ ○ ○ ○ ○

Graphical Interpretation

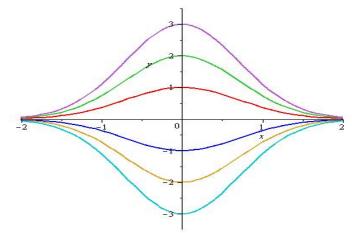


Figure: Each curve solves y' + 2xy = 0, $y(0) = y_0$. Each colored curve corresponds to a different value of y_0

 $x = c_1 \cos(2t) + c_2 \sin(2t)$ is a 2-parameter family of solutions of the ODE x'' + 4x = 0. Find a solution of the IVP

$$x'' + 4x = 0$$
, $x\left(\frac{\pi}{2}\right) = -1$, $x'\left(\frac{\pi}{2}\right) = 4$

All solutions look like x= C, Cos2t + C2 Sin2t

s
$$X' = -2C_1 \sin 2t + 2C_2 \cos 2t$$

January 12, 2016 21 / 42

$$\begin{split} \text{Impose } x'(\underline{F}) &= 4 \\ x'(\underline{F}) &= -2 \cdot 2 \sin(2 \cdot \underline{F}) + 2 c_2 \cos(2 \cdot \underline{F}) = 4 \\ &= 2 c_2 = 4 = 3 (2 = -2) \\ \end{split}$$

$$The solution to the INP is \\ x &= \cos 2t - 2 \sin 2t \\ \end{split}$$

January 12, 2016