January 14 Math 2306 sec. 60 Spring 2019

Section 2: Initial Value Problems

An initial value problem consists of an ODE with a certain type of additional conditions.

Solve the equation ¹

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$
 (1)

subject to the *initial conditions*

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, y^{(n-1)}(x_0) = y_{n-1}.$$
 (2)

The problem (1)–(2) is called an *initial value problem* (IVP).

¹on some interval *I* containing x_0 .

Example

Part 1: Verify that $x = c_1 \cos(2t) + c_2 \sin(2t)$ is a 2-parameter family of solutions of the ODE

$$x'' + 4x = 0.$$

- = -4C, Gs(2+)-4Cz Sin(2+)+4C, Gs(2+)+4Cz Sin(2+)
- = Cos (2t) (-4C, +4C) + Sim(2t) (-4C, +4C2)

- = 0 + 0
 - = D
- so the family solves the ODE for any choice of C, and Cz.

Example

Part 2: Find a solution of the IVP

$$x'' + 4x = 0$$
, $x\left(\frac{\pi}{2}\right) = -1$, $x'\left(\frac{\pi}{2}\right) = 4$

we know that the solutions are of the form

Imposing the initial conditions

$$\chi\left(\frac{\pi}{2}\right) = C_1 C_0 s\left(2 \cdot \frac{\pi}{2}\right) + C_2 S_{in}\left(2 \cdot \frac{\pi}{2}\right) = -$$

$$C_1(-1) + C_2(0) = -1 \Rightarrow C_1 = 1$$

$$\chi'(\frac{\pi}{2}) = -2C_1 \sin(2\frac{\pi}{2}) + 2C_2 \cos(2\frac{\pi}{2}) = Y$$

 $\cdot 2C_1(0) + 2C_2(-1) = Y \Rightarrow C_2 = -2$

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are

- (1) Does an IVP have a solution? (existence) and
- (2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve
$$\left(\frac{dy}{dx}\right)^2 + 1 = -y^2$$
.

Uniqueness

Consider the IVP

$$\frac{dy}{dx} = x\sqrt{y} \quad y(0) = 0$$

Verify that $y = \frac{x^4}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.

Solving an IVP means satisfying a differential equation AND satisfying an initial condition.

Show that $y = \frac{\chi^4}{16}$ satisfies the initial condition:

The initial condition says
$$y=0$$
 when $x=0$.
 $y=\frac{x^4}{1b}$, $y(0)=\frac{0^4}{1b}=\frac{0}{1b}=0$. It does satisfy the I.C.

$$\frac{dy}{dx} = x\sqrt{y}$$
 $y(0) = 0$

Show that $y = \frac{x^4}{16}$ solves the differential equation:

$$y = \frac{x^{\frac{1}{16}}}{16} \implies \frac{dy}{dx} = \frac{4x^{3}}{16} = \frac{x^{3}}{4} \quad \text{and} \quad \sqrt{y} = \sqrt{\frac{x^{2}}{16}} = \frac{|x^{2}|}{4} = \frac{x^{2}}{4}$$

$$\frac{dy}{dx} = \frac{x^{3}}{4} = x\sqrt{y} = x\left(\frac{x^{2}}{4}\right)$$

$$\frac{x^{3}}{4} = \frac{x^{3}}{4} \quad \text{y solver the ODE}$$

So y= xy solves the IVP.

$$\frac{dy}{dx} = x\sqrt{y} \quad y(0) = 0$$

Find another solution to the IVP. (Hint: Think about really simple functions like a constant function.)

The constant function
$$y=0$$
 solves the NP.
If $y(x)=0$, then $y(0)=0$. And if $y(x)=0$, then
$$\frac{dy}{dx}=0$$
 so
$$\frac{dy}{dx}=0=xTy=xT0=0$$

January 11, 2019 9 / 23

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$\frac{dy}{dx} = g(x).$$

For example, solve the ODE

$$\frac{dy}{dx} = 4e^{2x} + 1. \qquad \Rightarrow \qquad y = \int (4e^{2x} + 1) dx$$

January 11, 2019 10 / 23

Separable Equations

Definition: The first order equation y' = f(x, y) is said to be **separable** if the right side has the form

$$f(x,y)=g(x)h(y).$$

That is, a separable equation is one that has the form

$$\frac{dy}{dx}=g(x)h(y).$$

Determine which (if any) of the following are separable.

(b)
$$\frac{dy}{dx} = 2x + y$$
 No, not separable $2x + y = y\left(\frac{2x}{y} + 1\right)$

January 11, 2019 12 / 23