
January 15 Math 3260 sec. 51 Spring 2020

Section 1.2: Row Reduction and Echelon Forms

I We defined row echelon (ref) and reduced row echelon (rref)
forms.

I We saw that there is an algorithm involving row operations to
obtain an (r)ref from a matrix.

I We recall that matrices obtained from elementary row operations
are row equivalent. We have the following theorem:

Theorem: The reduced row echelon form of a matrix is unique.
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Example

We considered the matrix

 0 3 −6 4 6
3 −7 8 8 −5
3 −9 12 6 −9

.

 3 −9 12 6 −9
0 1 −2 1 2
0 0 0 1 0

 is an ref of this matrix.

 1 0 −2 0 3
0 1 −2 0 2
0 0 0 1 0

 is THE rref of this matrix.

Our theorem can be restated as saying: Every matrix is row
equivalent to exactly one reduced echelon matrix.
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Uniqueness of the rref

We have the following unambiguous definitions:

Definition: A pivot position in a matrix A is a location that
corresponds to a leading 1 in the reduced echelon form of A.

Definition: A pivot column is a column of A that contains a pivot
position.

We can identify the pivot positions and pivot columns of a matrix by
reference to its rref.
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Example
Using the know rref to identify the pivot position and columns of the
matrix A.

A =


0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1
1 4 5 −9 −7

 rref(A) =


1 0 −3 0 5
0 1 2 0 −3
0 0 0 1 0
0 0 0 0 0


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Complete Row Reduction isn’t needed to find Pivots

Pivot positions correspond to leading entries in any ref. 1 1 4
−2 1 −2
1 0 2


This matrix has an ref and rref 1 1 4

0 3 6
0 0 0

 and

 1 0 2
0 1 2
0 0 0

 , respectively.

It’s clear that the first and second columns are pivot columns from the
ref.
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Solutions to Linear Systems
Example: Suppose the given reduced echelon matrix is an
augmented matrix for a linear system. Describe the solution set of the
linear system.


1 1 0 0 4 3
0 0 1 0 −2 4
0 0 0 1 0 −9
0 0 0 0 0 0


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Basic and Free Variables

Suppose we use an augmented matrix and row reduction (to rref) to
solve a linear system of equations. If the system is consistent

I We will call a variable a basic variable if its column is a pivot
column.

I We will call a variable a free variable if its column is NOT a pivot
column.

I We will follow the convention that when a system has free
variables

We will express basic variables in terms of free variables, and
never the other way around.

I Such a description of the solution space is called a parametric
description.
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Example

The equations
x1 = 3 − x2 − 4x5
x3 = 4 + 2x5
x4 = −9
x2 and x5 are free

is a parametric description of the solution set to the system of

equations having


1 1 0 0 4 3
0 0 1 0 −2 4
0 0 0 1 0 −9
0 0 0 0 0 0

 as its augmented matrix.
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Consistent versus Inconsistent Systems
Consider each rref. Determine if the underlying system (the one with
this as its augmented matrix) is consistent or inconsistent.

 1 2 0 0
0 0 1 4
0 0 0 0

 ,

 1 0 0 0
0 1 0 4
0 0 1 −3

 ,

 1 0 2 3
0 1 1 0
0 0 0 1


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An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most
column of the augmented matrix is NOT a pivot column. That is, if and
only if each echelon form DOES NOT have a row of the form

[0 0 · · · 0 b], for some nonzero b.

If a linear system is consistent, then it has

(i) exactly one solution if there are no free variables, or
(ii) infinitely many solutions if there is at least one free variable.
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