January 15 Math 3260 sec. 55 Spring 2020

Section 1.2: Row Reduction and Echelon Forms

- We defined row echelon (ref) and reduced row echelon (rref) forms.
- We saw that there is an algorithm involving row operations to obtain an (r)ref from a matrix.
- We recall that matrices obtained from elementary row operations are row equivalent. We have the following theorem:

Theorem: The reduced row echelon form of a matrix is unique.

Example

We considered the matrix $\left[\begin{array}{ccccc}0 & 3 & -6 & 4 & 6 \\ 3 & -7 & 8 & 8 & -5 \\ 3 & -9 & 12 & 6 & -9\end{array}\right]$.
$\left[\begin{array}{ccccc}3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$ is an ref of this matrix.
$\left[\begin{array}{ccccc}1 & 0 & -2 & 0 & 3 \\ 0 & 1 & -2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$ is THE rref of this matrix.

Our theorem can be restated as saying: Every matrix is row equivalent to exactly one reduced echelon matrix.

Uniqueness of the rref

We have the following unambiguous definitions:

Definition: A pivot position in a matrix A is a location that corresponds to a leading 1 in the reduced echelon form of A.

Definition: A pivot column is a column of A that contains a pivot position.

We can identify the pivot positions and pivot columns of a matrix by reference to its rref.

Example
Using the know ref to identify the pivot position and columns of the matrix A.

$$
A=\left[\begin{array}{ccccc}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{array}\right] \quad \operatorname{rref}(A)=\left[\begin{array}{ccccc}
1 & 0 & -3 & 0 & 5 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$The pivot positions.The leading ones are in columns 1,2 , and 4

The $1^{\text {st }}, 2^{\text {nd }}$, and
$4^{\text {th }}$ Columns of A are the pivot columns

* The pivot positions arerit obvious from A alone. The ret identifies them. *

Complete Row Reduction isn't needed to find Pivots

Pivot positions correspond to leading entries in any ref.
$\left[\begin{array}{ccc}1 & 1 & 4 \\ -2 & 1 & -2 \\ 1 & 0 & 2\end{array}\right]$

This matrix has an ref and rref

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 3 & 6 \\
0 & 0 & 0
\end{array}\right] \text { and }\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right], \text { respectively. }
$$

It's clear that the first and second columns are pivot columns from the ref.

Solutions to Linear Systems
Example: Suppose the given reduced echelon matrix is an augmented matrix for a linear system. Describe the solution set of the linear system.
The system is

$$
\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 4 & 3 \\
0 & 0 & 1 & 0 & -2 & 4 \\
0 & 0 & 0 & 1 & 0 & -9 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
x_{1}+x_{2} & +4 x_{5}
\end{aligned}=31+x_{3} \quad-2 x_{5}=49
$$

4 equations ${ }^{5} 5$ vaniobler
Clearly, $x_{4}=-9$. Otherwise, we can express x_{1}, x_{2}, x_{3}, and x_{5} in terms of one another. Note that the pivot columns are 1,3 , and 4 . So x_{1}, x_{3}, x_{4} appear only once with coefficient one.

Columns 2 and 5 (as dell as 6) are not pivot columns. Variables x_{2}, x_{5} need not hove coefficient one and can appear in more than one equation.
weill call x_{1}, x_{3}, x_{4} basic vamiables, and express them in terms of x_{2} and x_{5}, weill call x_{2} and x_{5} free.

$$
\begin{aligned}
& x_{1}=3-x_{2}-4 x_{5} \\
& x_{3}=4+2 x_{5} \\
& x_{4}=-9
\end{aligned}
$$

and x_{2}, x_{5} are any real number.

* Note: An equation like $x_{3}-2 x_{5}=4$ can be written ass
$x_{3}=4+2 x_{5}$, x_{s} any real number OR $x_{5}=-2+\frac{1}{2} x_{3}, x_{3}$ any real number

To make it easier to read and write our results, weill use the Convention that $x_{3}=4+2 x_{5}$ is prefered.

* Column 3 is a piuot column and Column S is not

Basic and Free Variables

Suppose we use an augmented matrix and row reduction (to rref) to solve a linear system of equations. If the system is consistent

- We will call a variable a basic variable if its column is a pivot column.
- We will call a variable a free variable if its column is NOT a pivot column.
- We will follow the convention that when a system has free variables

We will express basic variables in terms of free variables, and never the other way around.

- Such a description of the solution space is called a parametric description.

Example

The equations

$$
\begin{aligned}
& x_{1}=3-x_{2}-4 x_{5} \\
& x_{3}=4+2 x_{5} \\
& x_{4}=-9 \\
& x_{2} \text { and } x_{5} \text { are free }
\end{aligned}
$$

is a parametric description of the solution set to the system of equations having $\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 4 & 3 \\ 0 & 0 & 1 & 0 & -2 & 4 \\ 0 & 0 & 0 & 1 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ as its augmented matrix.

Consistent versus Inconsistent Systems
Consider each ref. Determine if the underlying system (the one with this as its augmented matrix) is consistent or inconsistent.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -3
\end{array}\right],} \\
& x_{1}+2 x_{2}=0 \\
& x_{3}=4 \\
& 0=0 \\
& x_{1}=-2 x_{2} \\
& x_{3}=4 \\
& x_{2} \text {-free } \\
& \text { Consistent } \\
& \text { w) free } \\
& \text { variable }
\end{aligned}
$$

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
x_{1} \quad+2 x_{3}=3
$$

$$
x_{2}+x_{3}=0
$$

$$
0=1
$$

$0=1$ is false!
inconsistent

An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most column of the augmented matrix is NOT a pivot column. That is, if and only if each echelon form DOES NOT have a row of the form
$\left[\begin{array}{llll}0 & 0 & \cdots & 0\end{array}\right]$, for some nonzero b.
If a linear system is consistent, then it has
(i) exactly one solution if there are no free variables, or
(ii) infinitely many solutions if there is at least one free variable.

