January 16 Math 2306 sec. 60 Spring 2018

Section 2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.

Solve the equation ${ }^{1}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).

[^0]IVPs
First order case:

$$
\begin{array}{lc}
& \frac{d y}{d x}=f(x, y), \\
\begin{array}{cc}
\text { se } & y\left(x_{0}\right)=y_{0} \\
I^{\text {st }}, & \text { Tone initial condition } \\
\text { ordn }^{\prime} & \text { IDE }
\end{array}
\end{array}
$$

Second order case:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0}, \quad y^{r^{2}}\left(x_{0}\right)=y_{1}
\end{aligned}
$$

If y is the position of a particle (e) tine x The ODE gives the acceleration. yo would be initial position and y would be the initio velocity.

Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3 \\
& y=c_{1} x+c_{2} x^{-1}, \quad y^{\prime}=c_{1}-c_{2} x^{-2}, \quad y^{\prime \prime}=2 c_{2} x^{-3}, \text { substitute } \\
& x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2}\left(2 c_{2} x^{-3}\right)+x\left(c_{1}-c_{2} x^{-2}\right)-\left(c_{1} x+c_{2} x^{-1}\right) \\
&=2 c_{2} x^{-1}+c_{1} x-c_{2} x^{-1}-c_{1} x-c_{2} x^{-1} \\
&=x^{-1}\left(2 c_{2}-c_{2}-c_{2}\right)+x\left(c_{1}-c_{1}\right) \\
&=x^{-1}(0)+x(0)=0 \quad \text { as expected }
\end{aligned}
$$

From $y=c_{1} x+\frac{c_{2}}{x}$, impose $y(1)=1, y^{\prime}(1)=3$

$$
\begin{aligned}
& y(1)=c_{1}(1)+\frac{c_{2}}{1}=1 \Rightarrow c_{1}+c_{2}=1 \quad 2 e e^{n s} c_{1} c_{2} \\
& y^{\prime}(1)=c_{1}-c_{2}(1)^{-2}=3 \Rightarrow \quad \begin{array}{r}
c_{1}-c_{2}=3 \\
2 c_{1}=4 \\
c_{1}=2
\end{array} \\
& c_{2}=1-c_{1}=1-2=
\end{aligned}
$$ is

$$
y=2 x-\frac{1}{x}
$$

Example
Part 1
Show that for any constant c the relation $x^{2}+y^{2}=c$ is an implicit solution of the ODE

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

we use implicit diff. to show that if y satisfies the relation, it als. satisfies the ODE.

$$
\begin{aligned}
x^{2}+y^{2}=c \quad & \Rightarrow 2 x+2 y \frac{d y}{d x}=0 \\
\Rightarrow 2 y \frac{d}{d x} & =-2 x \quad \text { if } \quad y \neq 0 \quad \frac{d y}{d x}=\frac{-2 x}{2 y} \\
& \Rightarrow \frac{d y}{d x}=\frac{-x}{y}
\end{aligned}
$$

Example
Part 2
Use the preceding results to find an explicit solution of the IVP

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad y(0)=-2
$$

we know solutions are given by $x^{2}+y^{2}=c$

Impose $y(0)=-2$.

$$
0^{2}+(-2)^{2}=c \Rightarrow 4=c
$$

so implicit solutions to the IVP are

$$
x^{2}+y^{2}=4
$$

Find y explicitly: $\quad y^{2}=4-x^{2}$

So

$$
y=\sqrt{4-x^{2}} \quad \text { or } \quad y=-\sqrt{4-x^{2}}
$$

Since $y(0)=-2$, only the one with the negative sign solves the IVP.

The solution is $y=-\sqrt{4-x^{2}}$.

Graphical Interpretation

Figure: Each curve solves $y^{\prime}+2 x y=0, y(0)=y_{0}$. Each colored curve corresponds to a different value of y_{0}

Example
$x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$ is a 2-parameter family of solutions of the ODE $x^{\prime \prime}+4 x=0$. Find a solution of the IVP

$$
\begin{aligned}
& x^{\prime \prime}+4 x=0, \quad x\left(\frac{\pi}{2}\right)=-1, \quad x^{\prime}\left(\frac{\pi}{2}\right)=4 \\
& x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \\
& x\left(\frac{\pi}{2}\right)= c_{1} \cos \left(2 \cdot \frac{\pi}{2}\right)+c_{2} \sin (2 \cdot \pi / 2)= \\
& c_{1} \cos (\pi)+c_{2} \sin (\pi)=-1 \\
& c_{1}(-1)+c_{2}(0)=-1 \Rightarrow c_{1}=1 \\
& x^{\prime}\left(\frac{\pi}{2}\right)=-2 c_{1} \sin \left(2 \cdot \frac{\pi}{2}\right)+2 c_{2} \cos (2 \cdot \pi / 2) \\
&=-2 c_{1}(0)+2 c_{2}(-1)=4 \Rightarrow-2 c_{2}=4 \quad c_{2}=-2
\end{aligned}
$$

The solution to the IVPis

$$
x=\cos (2 t)-2 \sin (2 t)
$$

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are
(1) Does an IVP have a solution? (existence) and
(2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve $\left(\frac{d y}{d x}\right)^{2}+1=-y^{2}$.

$$
\text { 7, } \quad \leq 0
$$

Uniqueness
Consider the IVP

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Verify that $y=\frac{x^{4}}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.
we need to show that $y=\frac{1}{16} x^{4}$ solves both the ODE E and the Initial condition.
Initial condition: $y=\frac{1}{16} x^{4} \quad y(0)=\frac{1}{16}(0)^{4}=0 \quad y^{0} y(0)^{=0}$.
ODE: $\quad y=\frac{1}{16} x^{4} \Rightarrow y^{\prime}=\frac{1}{16}\left(4 x^{3}\right)=\frac{1}{4} x^{3}$
and $x \sqrt{y}=x \sqrt{\frac{1}{16} x^{4}}=x\left(\frac{1}{4}\right)\left|x^{2}\right|=x\left(\frac{1}{4} x^{2}\right)=\frac{1}{4} x^{3}$
January 14, $2018 \quad 12 / 28$
so $\quad \frac{d y}{d x}=\frac{1}{4} x^{3}=x \sqrt{y} \quad y=\frac{1}{16} x^{4}$ solver the ODE.

The IVP is $y^{\prime}=x \sqrt{y}, \quad y(0)=0$

If we corside a simple constant function $y=C$.
$y(a)=0$ requires $C=0$.
For $y=0, y^{\prime}=0$ and $x \sqrt{y}=x \sqrt{0}=0$
So $y=0$ solves the IVP.
This is called the trivial solution.

[^0]: ${ }^{1}$ on some interval / containing x_{0}.

