## January 16 Math 2306 sec. 60 Spring 2019

## Section 3: Separation of Variables

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y) .
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right)$ Not separable
(d) $\frac{d y}{d t}-t e^{t-y}=0 \Rightarrow \frac{d y}{d t}=t e^{t-y}=t e^{t} e^{-y}$

This is separable with $g(t)=t e^{t}$

$$
h(y)=e^{-y}
$$

## Solving Separable Equations

Recall that from $\frac{d y}{d x}=g(x)$, we can integrate both sides

$$
\begin{aligned}
& \int \frac{d y}{d x} d x=\int g(x) d x \\
& \int d y=\int g(x) d x
\end{aligned}
$$

$$
y=G(x)+C \text { where } G \text { is }
$$

any ontidenivative

$$
\text { of } g
$$

We'll use this observation!

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

$$
\begin{aligned}
& \frac{d y}{d x}=g(x) h(y) \\
& \text { Separate } x \text { and } y \\
& \frac{1}{h(y)} \frac{d y}{d x}=g(x) \quad(\text { divide by } h \text { ) } \\
& p(y) \frac{d y}{d x} d x=g(x) d x \quad \text { (maltipl, by } d x \text { ) } \\
& \int p(y) d y=\int g(x) d x \\
& P(y)=G(x)+C \leftarrow \quad \text { of implicit } \\
& \text { solutions }
\end{aligned}
$$

where $P$ and $G$ are antiderivatives of $p$ and $g$, respectively.

Solve the ODE

$$
\begin{aligned}
\frac{d y}{d x}=-\frac{x}{y}=-x\left(\frac{1}{y}\right) & \Rightarrow y \frac{d y}{d x}=-x \\
y d y & =-x d x \\
\int y d y & =-\int x d x \\
\frac{y^{2}}{2} & =\frac{-x^{2}}{2}+C \quad \text { Letting } k=2 C \\
y^{2} & =-x^{2}+k \Rightarrow x^{2}+y^{2}=k
\end{aligned}
$$

we get a one-panometer family of solutions defined implicitly.

An IVP ${ }^{1}$

$$
\begin{gathered}
t e^{t-y} d t-d y=0, \quad y(0)=1 \\
t e^{t-y} d t=\frac{d y}{d t}=t e^{t-y}=t e^{t} e^{-y} \\
\frac{1}{e^{-y}} \frac{d y}{d t}=t e^{t} \\
\int e^{y} d y=\int t e^{t} d t \quad u= \\
e^{y}=t e^{t}-\int e^{t} d t
\end{gathered}
$$

$$
e^{y}=t e^{t}-e^{t}+C
$$

This is a one-panametur forks of solutions to the $O D E$. Now impose the condition $y(0)=1$.
when $t=0, y=1$

$$
e^{\prime}=o e^{0}-e^{0}+c \Rightarrow e=-1+c \Rightarrow c=e+1
$$

The solution to the IVP is given implicitly by

$$
e^{b}=t e^{t}-e^{t}+e+1
$$

## Caveat regarding division by $h(y)$.

Recall that the IVP $\quad \frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0$
has two solutions

$$
y(x)=\frac{x^{4}}{16} \quad \text { and } \quad y(x)=0 .
$$

If we separate the variables

$$
\frac{1}{\sqrt{y}} d y=x d x
$$

we lose the second solution.
Why? Division by $\sqrt{y}$ assumes $y \neq 0$ !

## Solutions Defined by Integrals

Recall (Fundamental Theorem of Calculus)

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \quad \text { and } \quad \int_{x_{0}}^{x} \frac{d y}{d t} d t=y(x)-y\left(x_{0}\right)
$$

Use this to solve

$$
\begin{aligned}
\frac{d y}{d x} & =g(x), \quad y\left(x_{0}\right)=y_{0} \\
\frac{d y}{d x} d x & =g(x) d x \\
d y & =g(x) d x \\
\int_{x_{0}}^{x} d y & =\int_{x_{0}}^{x} g(t) d t
\end{aligned}
$$

$$
y(x)-y\left(x_{0}\right)=\int_{x_{0}}^{x} g(t) d t
$$

The solution to the IV P is

$$
y(x)=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

Note: $\frac{d y}{d x}=\frac{d}{d x}\left(y_{0}+\int_{x 0}^{x} g(t) d t\right)=0+\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x)$
so $\frac{d y}{d x}=g(x)$
and $y\left(x_{0}\right)=y_{0}+\int_{x_{0}}^{x_{0}} g(t) d t=y_{0}+0=y_{0}$

