January 16 Math 3260 sec. 56 Spring 2018

Section 1.2: Row Reduction and Echelon Forms

We defined the following Elementary Row Operations
i Replace a row with the sum of itself and a multiple of another row (replacement).
ii Interchange any two rows (row swap).
iii Multiply a row by any nonzero constant (scaling).
We said that if a sequence of these operations transforms a matrix, the result is called Row Equivalent.

Theorem: If the augmented matrices of two linear systems are row equivalent, then the systems are equivalent.

Why is Row Equivalence Interesting?

The following matrices are row equivalent.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & -1 & 7 \\
1 & 2 & 2 & 1 \\
\frac{1}{2} & \frac{7}{2} & 1 & 3
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -2
\end{array}\right]}
\end{aligned}
$$

Echelon Forms

Definition: A matrix is in echelon form (a.k.a. row echelon form) if the following properties hold
i Any row of all zeros are at the bottom.
ii The first nonzero number (called the leading entry) in a row is to the right of the first nonzero number in all rows above it.
iii All entries below a leading entry are zeros.

$$
\begin{gathered}
\text { Is } \\
{\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & -1 & 1 \\
0 & 0 & 7
\end{array}\right]}
\end{gathered}
$$

Is Not

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

Reduced Echelon Form

Definition: A matrix is in reduced echelon form (a.k.a. reduced row echelon form) if it is in echelon form and the following additional properties hold
iv The leading entry of each row is 1 (called a leading 1), and
v each leading 1 is the only nonzero entry in its column.

Is

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Is Not

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Example (finding ref's and ref's)
Find an echelon form for the following matrix using elementary row operations.

We want a nunzeno entry in column 1, row 1.
$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 3 & 6 \\ 0 & 3 & 2\end{array}\right]$
we have one. well work from left to right, top-doun. We can use the 2 to dear the ronzensentries blow it.

To clear the 4, do $-2 R_{1}+R_{2} \rightarrow R_{2}$

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
0 & 1 & 0 \\
0 & 3 & 2
\end{array}\right]
$$

Scratch

$$
\begin{array}{rrrr}
-4 & -2 & -6 & -2 R_{1} \\
4 & 3 & 6 &
\end{array}
$$

We want a nonzero entry in row 2 colum 2 if possible. we already hone one. we use the leading enter to get zero below it.
$D_{0} \quad-3 R_{2}+R_{3} \rightarrow R_{3}$
$\left[\begin{array}{lll}2 & 1 & 3 \\ 0 & 1 & 0 \\ 6 & 0 & 2\end{array}\right]$
This an echelon form of the orisind matrix.

Find the reduced echelon form for the following matrix.
$\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 3 & 6\end{array}\right]$ From on echelon form, we work risht to left, bottom up.

From $\left[\begin{array}{lll}2 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
Scale Do $\frac{1}{2} R_{3} \rightarrow R_{3}$
$\left[\begin{array}{lll}2 & 1 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Clear the column

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Do $\quad-R_{2}+R_{1} \rightarrow R_{1}$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\text { Finally scale } \\
\frac{1}{2} R_{1} \rightarrow R_{1}
\end{array}} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

This is the reduced row echelon form of the matrix.

Theorem: The reduced row echelon form of a matrix is unique.

This allows the following unambiguous definition:
Definition: A pivot position in a matrix A is a location that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.

Identify the pivot position and columns given...

A
$\left[\begin{array}{ccccc}0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & (3) & -1 \\ 1 & 4 & 5 & -9 & -7\end{array}\right]$
O-pivot positions
The pivot colons are 1,2 , and 4 .
ref of A
$\left[\begin{array}{ccccc}1 & 0 & -3 & 0 & 5 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

- leading ones

Complete Row Reduction isn't needed to find Pivots

Find the pivot positions and pivot columns of the matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\text { (1) } & 1 & 4 \\
-2 & 11 & -2 \\
1 & 0 & 2
\end{array}\right] \begin{array}{l}
\text { The leading entries in any ref are } \\
\text { where leading } 15 \text { are in the ref. }
\end{array}} \\
& \text { pivot columns are land } 2 \text {. The pivot } \\
& \text { positions are circled. }
\end{aligned}
$$

This matrix has an ref and ref

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 3 & 6 \\
0 & 0 & 0
\end{array}\right] \text { and }\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right], \text { respectively. }
$$

Row Reduction Algorithm

To obtain an echelon form, we work from left to right beginning with the top row working downward.

$$
\left.\left[\begin{array}{ccccc}
{\left[\begin{array}{cccc}
0 & 3 & -6 & 4 \\
\hline
\end{array}\right]} \\
3 & -7 & 8 & 8 & -5 \\
3 & -9 & 12 & 6 & -9
\end{array}\right] \quad \begin{array}{l}
\text { Get a nonzero entry in the top } \\
\text { left position } \\
\left.R_{1} \leftrightarrow R_{3} \leftrightarrow R_{3}\right)
\end{array} \begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
3 & -7 & 8 & 8 & -5 \\
0 & 3 & -6 & 4 & 6
\end{array}\right]
$$

Step 1: The left most column is a pivot column. The top position is a pivot position.
Step 2: Get a nonzero entry in the top left position by row swapping if needed.

Row Reduction Algorithm

Use the $1^{\text {st }}$ row column ert y to
$\left[\begin{array}{ccccc}3 & -9 & 12 & 6 & -9 \\ 3 & -7 & 8 & 8 & -5 \\ 0 & 3 & -6 & 4 & 6\end{array}\right]$ clear its column.

$$
-R_{1}+R_{2} \rightarrow R_{2}
$$

$$
\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 2 & -4 & 2 & 4 \\
0 & 3 & -6 & 4 & 6
\end{array}\right]
$$

Step 3: Use row operations to get zeros in all entries below the pivot.

Row Reduction Algorithm

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 2 & -4 & 2 & 4 \\
0 & 3 & -6 & 4 & 6
\end{array}\right] \begin{array}{l}
\text { Now, we try to set a } \\
\text { non zeno number in row } 2 \\
\text { column } 2 \text {. we hare one } \\
\text { already. Use it to get } \\
\text { a zero bllowit. }
\end{array}} \\
\text { Let's sal row } 2 \begin{array}{llll}
\frac{1}{2} R_{2} \rightarrow R_{1}
\end{array} \\
{\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 1 & -2 & 1 & 2 \\
0 & 3 & -6 & 4 & 6
\end{array}\right]}
\end{gathered}
$$

Step 4: Ignore the row with a pivot, all rows above it, the pivot column, and all columns to its left, and repeat steps 1-3.

$$
-3 R_{2} \rightarrow 0 \quad-3 \quad 6 \quad-3 ~-6
$$

Row Reduction Algorithm $R_{3} \rightarrow 0$| 0 | -3 | 6 | -3 | -6 |
| :---: | :---: | :---: | :---: | :---: |

$$
\begin{aligned}
& D_{0} \quad-3 R_{2}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{ccccc}
3 & -9 & n & 6 & -9 \\
0 & 1 & -2 & 1 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] }
\end{aligned}
$$

This is an echelon form.

Row Reduction Algorithm
To obtain a reduced row echelon form:
Step 5: Starting with the right most pivot and working up and to the left, use row operations to get a zero in each position above a pivot. Scale to make each pivot a 1.
to clear

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
3 & -9 & 12 & 6 & -9 \\
0 & 1 & -2 & 1 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \text { th. to } 8_{\text {abl }}^{z^{505}} \text { it }} \\
& -R_{3}+R_{2} \rightarrow R_{2} \text { and }-6 R_{3}+R_{1} \rightarrow R_{1} \\
& \text { reading } \\
& \text { ore }\left[\begin{array}{ccccc}
3 & -9 & 12 & 0 & -9 \\
0 & 1 & -2 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Row Reduction Algorithm

$$
\begin{gathered}
9 R_{2}+R_{1} \rightarrow R_{1} \\
{\left[\begin{array}{ccccc}
3 & 0 & 6 & 6 & 9 \\
0 & 1 & -2 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]}
\end{gathered}
$$

Finale, scale row 1

$$
\begin{gathered}
\frac{1}{3} R_{1}=R_{1} \\
{\left[\begin{array}{ccccc}
1 & 0 & 2 & 2 & 3 \\
0 & 1 & -2 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]}
\end{gathered}
$$

Row Reduction Algorithm

The ret is

$$
\left[\begin{array}{rrrrr}
1 & 0 & 2 & 2 & 3 \\
0 & 1 & -2 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

were dome!

