January 17 Math 1190 sec. 63 Spring 2017

Second Day of Class

- 34

1/69

January 17, 2017

Today's Agenda

- Questions?
- Clicker activities
- Up coming Exam 1 (part 1) information
- More prerequisite review
- Section 1.1: Limits
- Any announcements from our SI leader Norman

Registering a Clicker

At the beginning of class, I will use the "Roll Call" feature. You will see your name and student ID with a three letter code.

- Grab a clicker from my stash at the beginning of class.
- Look for your name with three letter code on the roll call display. (All names won't fit on one screen, so it will alternate between groups.)
- ► Turn the clicker on, and methodically enter your three letter code.
- When your clicker is registered, your name box will turn gray with an ID code in the bottom right corner.

January 17, 2017

2/69

 If you press the wrong code, no worries, just press "DD" (or "DDD").

Clicker Questions Sample Question 1

The line y = 3x + 1 is **perpendicular** to which of the following lines.

イロト 不得 トイヨト イヨト 二日

January 17, 2017

3/69

(a)
$$y = -3x - 1$$

(b) $y = \frac{1}{3}x - 1$
Slopes of perpendicular
lines are negative
reciprocels.

(d) y = x - 3

((c)) $y = -\frac{1}{3}x + 4$

(e) None of the above

Sample Question 2

Recall that for True/False questions, we'll always use "A" for true and "B" for false.

True/False If f is a one-to-one function satisfying f(2) = -3, then $f^{-1}(-3) = 2$. This is the function / inverse function relationship.

January 17, 2017

4/69

Sample Question 3

The quadratic equation $x^2 + 2x - 8 = 0$ (x + 4)(x - 2) = 0(a) has solutions x = 4 and x = -2 $x + 4 = 0 \implies x = -4$ (b) has solutions x = 2 and x = -4(c) has solutions x = -2 and x = 8

(d) has no real solutions.

Sample Question 4

Suppose θ is an angle in standard position, and that

 $\sin \theta < 0$ and $\tan \theta > 0$.

The terminal side of θ must be in quadrant

(a) I (one) $\frac{5 \times 6^2 O}{\pi}$

(b) II (two)

(c) III (three)

Sind <0 in guods III and IV Land III I and III

(d) IV (four)

(e) can't be determined without more information

When: Thursday January 19 (two days from now) from 10:05am–10:30am (25 minutes)

What: This exam will make up 35% of Exam 1 for the semester. It will cover prerequisite topics: Algebra, trigonometry, and function basics. Worksheets 1, 2, and 3 in D2L and the course page cover this material.

Why: The two main causes of poor performance in Calculus are (1) prerequisite weakness, and (2) insufficient effort. The beginning of the semester is the time to hone those prereq skills and position yourself for success in this class.

Simplify Each Expression

(a)
$$\ln(e^8) = 8$$

: 8 Inc = 8.1 = 8

(b)
$$e^{2\ln 7} = e^{\int_{n}^{1} 2^{2}} e^{\int_{n}^{1} 4^{2}} e^{2\ln 7} = e^{2\ln 7} e^{2\pi 4}$$

 $= (e^{2n^{2}})^{2} = 7^{2} = 4^{2}$

Properties:

$$l_{ne} = x$$
 for all x
 $e^{l_{nx}} = x$ for all x
 $l_{na} = r l_{na}$
 $l_{ne} = 1$
 $l_{nl} = 0$
 $b \cdot c = (a^{c})$
 $u_{ne} + b + z + z = 200^{c}$
 $J_{anuary 17, 2017} = 8/69$

Factor completely

$$4(x+3)^{3}(x-1)^{-2} - 2(x+3)^{4}(x-1)^{-3}$$

$$= (x+3)^{3} \left(4(x-1)^{2} - 2(x+3)(x-1)^{3} \right)$$

$$= (x+3)^{3} (x-1)^{3} \left(4(x-1)^{2} - 2(x+3) \right)$$

$$= (x+3)^{3} (x-1)^{3} \left(4(x-4 - 2x - 6) \right)$$

$$= (x+3)^{3} (x-1)^{3} (2x-16)$$

 $(x-5)^{3}$

$$\frac{2(x+3)(x-2)}{(x-1)^{3}}$$

Let $f(x) = 2 - 4x^2$. Evaluate and simplify f(1+h) - f(1)h $f(1) = 2 - Y(1^2) = -2$ $f(1+h) = 2 - 4(1+h)^2 = 2 - 4(1 + 2h + h^2)$ $= 2 - 4 - 8h - 4h^2 = -7 - 8h - 4h^2$ $\frac{f(1+h)-f(1)}{h} = \frac{-2-8h-4h^2-(-2)}{4h^2}$ So

January 17, 2017 11 / 69

$$= \frac{-2 - 8h - 4h^{2} + 2}{h}$$

$$= -\frac{8h - 4h^{2}}{h}$$

$$= -\frac{4h(2 + h)}{k} = -4(2 + h)$$

◆□▶ < ⑦▶ < ≧▶ < ≧▶ ≧ シ ② へ で January 17, 2017 12 / 69

Consider the piecewise defined function

$$f(x) = \begin{cases} \frac{1}{x}, & x \le -1 \\ x^2 - 1, & x > -1 \end{cases}$$

Evaluate

- $\bullet f(-1) = \frac{1}{-1} = \cdot$
- $\bullet f(0) = 0^2 1 = -1$
- $f(1) = |^2 | = 0$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへぐ January 17, 2017 13 / 69 Produce a rough plot of *f*.

$$f(x) = \begin{cases} \frac{1}{x}, & x \le -1 \\ x^2 - 1, & x > -1 \end{cases}$$

January 17, 2017 15 / 69

Section 1.1: Limits of Functions Using Numerical and Graphical Techniques

In *Calculus*, we consider the way in which quantities **change**. In particular, if we have a function representing some process (motion of a particle, growth of a population, spread of a disease), we can analyze it to determine the nature of how it changes. We can also use knowledge of change to reconstruct a function describing a process.

Central to analyzing change and reconstructing functions is notion of a **limit**.

January 17, 2017

16/69

We know that a non-vertical line has the form

$$y = mx + b.$$

The slope *m* tells us how the dependent variable *y* will change if the independent variable *x* changes by a set amount Δx .

January 17, 2017 17 / 69

< 日 > < 同 > < 回 > < 回 > < □ > <

Slope

Consider y = 3x - 1 which has slope m = 3.

Note that two points on this line are (1,2) and (3,8). The change in *x* between these two points is

$$\Delta x = 3 - 1 = 2.$$

Compute the change in y, Δy .

$$\Delta y = 8 - 2 = G = 3 \cdot 2 = 3 \Delta x = m \Delta x$$
note $m \Delta x = \Delta y \implies M = \frac{\Delta y}{\Delta x}$

January 17, 2017 18 / 69

イロト 不得 トイヨト イヨト 二日

Question

The slope of the line containing the points (2, 2) and (3, 7) is

(a)
$$m = \frac{1}{5}$$

(b) $m = 5$
(c) $m = \frac{7}{2}$
 $M = \frac{5}{2}$
 $M = \frac{5}{2}$
 $M = \frac{5}{2}$
 $M = \frac{5}{2}$

イロト 不得 トイヨト イヨト 二日

January 17, 2017

19/69

(d) can't be determined without more information

Slope of a general curve

So slope of a line tells us how *y* changes when *x* changes. What if the curve isn't a line??

Figure: Can we consider *slope* for a curve like this?

January 17, 2017

20/69

The Tangent Line Problem

Figure: We begin by considering the tangent line problem. For a circle, a tangent line at point *P* is defined as the line having exactly one point in common with the circle. For the graph of a function y = f(x), we define the tangent line at the point *P* has the line that shares the point *P* and has the same *slope* as the graph of *f* at *P*.

Slope of the Tangent Line

Question: What is meant by the *slope* of the function at the point *P*?

For now, let's assume that the graph if reasonably *nice* like the one in the figure. Let *P* be at x = c and y = f(c)

i.e.
$$P = (c, f(c))$$
.

To find a slope, we require two points. So let's take another point Q on the graph of f. In term of coordinates

$$Q=(x,f(x)).$$

The line through the two points P and Q on the graph is called a **Secant Line**. We will denote the slopes of the tangent line and the secant line as

 m_{tan} and m_{sec} .

イロト 不得 トイヨト イヨト 二日

January 17, 2017

22/69

Slope of the Tangent Line

We have two points on our curve y = f(x). The points at *c* and *x* (with $x \neq c$) are

$$P = (c, f(c)),$$
 and $Q = (x, f(x)).$

Compute the slope m_{sec} of the secant line through these points.

 $Dy = f(x) - f(c) \qquad bx = x - c$ $M_{rec} = \frac{\Delta y}{bx} = \frac{f(x) - f(c)}{x - c}$

January 17, 2017 23 / 69

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Figure: The slope of the line through *P* and *Q* (rise over run) is

$$m_{sec} = \frac{f(x) - f(c)}{x - c}$$

Slope of the Tangent Line

We consider a sequence of points $Q_1 = (x_1, f(x_1))$, $Q_2 = (x_2, f(x_2))$, and so forth in such a way that the *x*-values are getting closer to *c*. Note that the resulting secant lines tend to have slopes closer to that of the tangent line.

Slope of the Tangent Line

We call this process a *limit*. We will define the slope of the tangent line as

$$m_{tan} = \left[\text{Limit of } \frac{f(x) - f(c)}{x - c} \text{ as } x \text{ gets closer to } c \right].$$

Our notation for this process will be

$$m_{tan} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

January 17, 2017

26/69

The notation $\lim_{x\to c}$ reads as "the limit as *x* approaches *c*."

Notation: The notation $\lim_{x\to c}$ is always followed by an algebraic expression. It is never immediately followed by an equal sign.

A Working Definition of a Limit

Definition: Let f be defined on an open interval containing the number c except possibly at c. Then

$$\lim_{x\to c} f(x) = L$$

provided the value of f(x) can be made arbitrarily close to the number L by taking x sufficiently close to c but not equal to c.

イロト 不得 トイヨト イヨト ヨー ろくの January 17, 2017

27/69

Example

Use a calculator to determine the slope of the line tangent to the graph of $y = x^2$ at the point (2, 4).

$$m_{trn} = \frac{p_{1n}}{x+z} = \frac{F(x) - F(z)}{x-z} = \frac{p_{1n}}{x+z} = \frac{x^2 - 4}{x-z}$$

X	$\frac{\mathbf{F}(x) - \mathbf{f}(2)}{x - 2}$
1.9	$\frac{F(1,9) - F(2)}{1,9 - 2} = \frac{(1,9)^2 - 4}{1,9 - 2} = 3,9$
1.99	3.99
1.999	3.999
2	undefined
2.001	4.001
2.01	4.01
2.1	$\frac{(2.1)^2 - 4}{2^{1} - 2} = 4, 1$

It appears like

$$\lim_{X \to Z} \frac{\chi^2 - Y}{\chi - Z} = Y$$

January 17, 2017 29 / 69

・ロト・西ト・ヨト・ヨー うへの

Example

Use a calculator and table of values to investigate

X	$f(x) = \frac{e^x - 1}{x}$
-0.1	$\left(\frac{e^{0.1}}{e^{-1}}\right)_{(-0.1)} \simeq 0.9516$
-0.01	0.99 50
-0.001	0.9995
0	undefined
0.001	1.0005
0.01	1,0050
0.1	(e°·1-1)/0,1 ~ 1.05 17

 $\begin{array}{c} p_{oolcs} & p_{obs}\\ p_{oolcs} & p_{oolcs}\\ p_{oolcs} & p_{oolcs}\\$

・ロト ・ 四ト ・ ヨト ・ ヨト

Question

True or False: In order to evaluate $\lim_{x\to c} f(x)$, the value of f(c) must be defined (i.e. *c* must be in the domain of *f*)?

< ロ > < 同 > < 回 > < 回 >

January 17, 2017

31/69

f (c) need not be defined.