January 17 Math 3260 sec. 51 Spring 2020

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a **column vector** or simply a **vector**.

Denoting Vectors:

- Bold faced in typesetting: vector x and number x
- Arrow overscore in handwriting: vector \vec{x} and number x.

\mathbb{R}^2 & Geometry

The set of vectors of the form $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with x_1 and x_2 real numbers is denoted by \mathbb{R}^2 (read "R two"). It's the set of all real ordered pairs.

Each vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{T} = (x_1, x_2)$. This is not to be confused with a row matrix.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \neq \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

January 11, 2020

2/13

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

Geometry

Figure: Vectors characterized as points, and vectors characterized as directed line segments.

3/13

January 11, 2020

Algebraic Operations Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and *c* be a scalar¹. Scalar Multiplication: The scalar multiple of \mathbf{u}

$$c\mathbf{u} = \left[egin{array}{c} cu_1 \ cu_2 \end{array}
ight]$$

Vector Addition: The sum of vectors u and v

$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

Vector Equivalence: Equality of vectors is defined by

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1$ and $u_2 = v_2$.

¹A **scalar** is an element of the set from which u_1 and u_2 come. For our purposes, a scalar is a *real* number.

Examples

$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$$

Evaluate
(a) $-2\mathbf{u} = -\mathbf{z} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} -2(4) \\ -2(4) \end{bmatrix} = \begin{bmatrix} -9 \\ 4 \end{bmatrix}$
(b) $-2\mathbf{u} + 3\mathbf{v} = \begin{bmatrix} -9 \\ 4 \end{bmatrix} + \begin{bmatrix} -3 \\ 21 \end{bmatrix} = \begin{bmatrix} -9 - 3 \\ 4 + 21 \end{bmatrix} = \begin{bmatrix} -11 \\ 25 \end{bmatrix}$
Is it true that $\mathbf{w} = -\frac{3}{4}\mathbf{u}$? Well, $-\frac{3}{4}\mathbf{v} = -\frac{3}{4}\begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$
 $\mathbf{v} = -\frac{3}{4}\mathbf{v}$.

January 11, 2020 5/13

Geometry of Algebra with Vectors

Figure: Left: $\frac{1}{2}(-4, 1) = (-2, 1/2)$. Right: (-4, 1) + (2, 5) = (-2, 6)

< □ > < @ > < E > < E > E のへで January 11, 2020 6/13

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if c > 0) or π (if c < 0). We'll see that $0\mathbf{u} = (0,0)$ for any vector \mathbf{u} in \mathbb{R}^2 .

Vector Addition: The sum $\mathbf{u} + \mathbf{v}$ of two vectors (nonparallel and not (0,0)) is the the fourth vertex of a parallelogram whose other three vertices are (u_1, u_2) , (v_1, v_2) , and (0,0).

Vectors in \mathbb{R}^n

A vector in \mathbb{R}^3 is a 3 \times 1 column matrix. These are ordered triples. For example

$$\mathbf{a} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}, \quad \text{or} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$$

.

A vector in \mathbb{R}^n for $n \ge 2$ is a $n \times 1$ column matrix. These are ordered *n*-tuples. For example

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by **0** or $\vec{0}$ and is not to be confused with the scalar 0.

Algebraic Properties on \mathbb{R}^n

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and d^2

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (vii) $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$ (viii) $1\mathbf{u} = \mathbf{u}$
These all follow foirly easily from our definitions, we'll
obe the Structure. We'll see this structure again later l

²The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

C

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3\mathbf{v}_{1}, \quad -2\mathbf{v}_{1} + 4\mathbf{v}_{2}, \quad \frac{1}{3}\mathbf{v}_{2} + \sqrt{2}\mathbf{v}_{1}, \quad \text{and} \quad \mathbf{0} = 0\mathbf{v}_{1} + 0\mathbf{v}_{2}.$$
Note $\vec{O} = \vec{O}\vec{v}_{1} + \vec{O}\vec{v}_{2}$

$$\vec{\mathcal{I}} \qquad \qquad \vec{\mathcal{I}} \qquad \qquad \vec{\mathcal{$$

Example

From
$$E_2$$
, $C_1=1$. Subjuste E_1 and E_3
 $3C_2 = -2 - 1 = -3 \implies C_2 = -1$
 $Z(_2 = -3 + 1 = -2 \implies C_2 = -1$
We can solve the System to set $C_1 = 1$, $C_2 = -1$
 $C_2 = -1$
 $C_3 = -1$
 $C_4 = -1$
 $C_5 =$

* Note: From the system, we have augmented
moderix
$$\begin{bmatrix} 1 & 3 & -2 \\ -2 & 0 & -2 \\ -1 & 2 & -3 \end{bmatrix}$$
 free $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$
The system is consistent. Again, we proton
get $C_1 = 1$, $C_2 = -1$.

January 11, 2020 12/13