January 17 Math 3260 sec. 55 Spring 2020

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a **column vector** or simply a **vector**.

Denoting Vectors:

- ▶ Bold faced in typesetting: vector **x** and number *x*
- Arrow overscore in handwriting: vector \vec{x} and number x.

1/13

R² & Geometry

The set of vectors of the form $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with x_1 and x_2 real numbers is denoted by \mathbb{R}^2 (read "R two"). It's the set of all real ordered pairs.

Each vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (x_1, x_2)$. This is **not to be confused with a row matrix.**

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \neq \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

Geometry

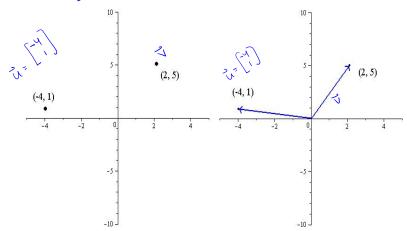


Figure: Vectors characterized as points, and vectors characterized as directed line segments.

3/13

Algebraic Operations

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and c be a scalar¹.

Scalar Multiplication: The scalar multiple of u

$$c\mathbf{u} = \left[\begin{array}{c} cu_1 \\ cu_2 \end{array} \right].$$

Vector Addition: The sum of vectors **u** and **v**

$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

Vector Equivalence: Equality of vectors is defined by

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1$ and $u_2 = v_2$.

¹A **scalar** is an element of the set from which u_1 and u_2 come. For our purposes, a scalar is a *real* number.

Examples

$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}, \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$$
Evaluate
$$(a) \quad -2\mathbf{u} = -2 \quad \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} -2(4) \\ -2(-2) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$$

$$3\sqrt{3} = \begin{bmatrix} 3(-1) \\ 3(7) \end{bmatrix} = \begin{bmatrix} -3 \\ 21 \end{bmatrix}$$

(b)
$$-2\mathbf{u}+3\mathbf{v} = \begin{bmatrix} -\vartheta \\ \mathsf{v} \end{bmatrix} + \begin{bmatrix} -3 \\ \mathsf{z}_1 \end{bmatrix} = \begin{bmatrix} -\vartheta-3 \\ \mathsf{v}_1+\mathsf{z}_1 \end{bmatrix} = \begin{bmatrix} -11 \\ \mathsf{z}_1 \end{bmatrix}$$

Is it true that
$$\mathbf{w} = -\frac{3}{4}\mathbf{u}$$
? well $\mathbf{w} = -\frac{3}{4}\mathbf{u} = -\frac{3}{4}\mathbf{u}$ as both components match, yes
$$\mathbf{w} = -\frac{3}{4}\mathbf{u} \cdot \mathbf{v} = -\frac{3}{4}\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{v}$$

Geometry of Algebra with Vectors

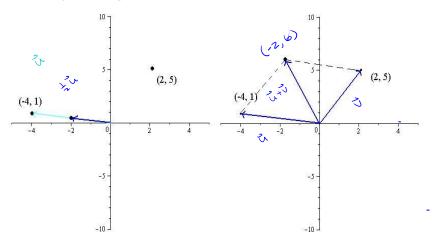
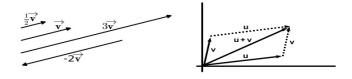


Figure: Left: $\frac{1}{2}(-4,1) = (-2,1/2)$. Right: (-4,1) + (2,5) = (-2,6)

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if c > 0) or π (if c < 0). We'll see that $0\mathbf{u} = (0,0)$ for any vector \mathbf{u} in \mathbb{R}^2 .



Vector Addition: The sum $\mathbf{u} + \mathbf{v}$ of two vectors (nonparallel and not (0,0)) is the the fourth vertex of a parallelogram whose other three vertices are (u_1, u_2) , (v_1, v_2) , and (0,0).

Vectors in \mathbb{R}^n

A vector in \mathbb{R}^3 is a 3 \times 1 column matrix. These are ordered triples. For example

$$\mathbf{a} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \quad \text{or} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

A vector in \mathbb{R}^n for $n \ge 2$ is a $n \times 1$ column matrix. These are ordered n-tuples. For example

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by $\mathbf{0}$ or $\vec{0}$ and is not to be confused with the scalar 0.

Algebraic Properties on \mathbb{R}^n

For every \mathbf{u} , \mathbf{v} , and \mathbf{w} in \mathbb{R}^n and scalars c and d^2

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

(iii)
$$\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$$
 (vii) $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$

(iv)
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
 (viii) $1\mathbf{u} = \mathbf{u}$
These all follow foirly easily from our definitions, we'll note the structure. We'll see this structure again later!

9/13

²The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3\mathbf{v}_1$$
, $-2\mathbf{v}_1 + 4\mathbf{v}_2$, $\frac{1}{3}\mathbf{v}_2 + \sqrt{2}\mathbf{v}_1$, and $\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2$.

Note $0 = 0\mathbf{v}_1 + 0\mathbf{v}_2$

Zero number

Example

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$. Determine if \mathbf{b} can

be written as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 .

Do there exist numbers
$$C_{10} c_{2}$$
 such that $c_{1} \ddot{a}_{1} + c_{2} \ddot{a}_{2} = \vec{b}$?

 $c_{1} \ddot{a}_{1} + c_{2} \ddot{a}_{2} = C_{1} \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} + c_{2} \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} c_{1} + 3c_{2} \\ -2c_{1} \\ -c_{1} + 2c_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$

defection upday add.

Vector equality requires
$$C_1 + 3C_2 = -2$$

$$-2C_1 = -2$$

$$-C_1 + 2C_2 = -3$$

a direct groves col.

From Ez, Ci=1. Sub into E, and Ez

$$3(z = -2 - 1 = -3)$$
 $= (z = -1)$
 $2(z = -3 + 1 = -2)$ $= (z = -1)$

we can solve the gysten to get C,=1, Cz=-1

* Yes bis a linear combination of a, and az.

In fact. $\vec{b} = \vec{a}_1 - \vec{a}_2$.

The system is consistent. Again, we get $C_1 = 1$, $C_2 = -1$.