January 18 MATH 1112 sec. 54 Spring 2019

Section 2.2: The Algebra of Functions

Let f and g be functions, and suppose that x is in the domain of each. Then define $f+g, f-g, f g$ and f / g, and use the following notation

- $(f+g)(x)=f(x)+g(x)$
- $(f-g)(x)=f(x)-g(x)$
- $(f g)(x)=f(x) g(x)$
- $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ provided $g(x) \neq 0$

The domain of $f+g, f-g$, and $f g$ is the set of all x such that x is in the domain of f and in the domain of g. The domain of f / g is the set of all all x such that x is in the domain of f, x is in the domain of g, and $g(x) \neq 0$.

Example
Let $f(x)=\frac{x}{x+2}$ and $g(x)=4 x-1$. Find each of
(a) $(f g)(x)=f(x) g(x)=\left(\frac{x}{x+2}\right)(4 x-1)=\frac{x(4 x-1)}{x+2}=\frac{4 x^{2}-x}{x+2}$
(b)

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} & =\frac{\frac{x}{x+2}}{4 x-1}=\frac{x}{x+2}\left(\frac{1}{4 x-1}\right) \\
& =\frac{x}{(x+2)(4 x-1)}=\frac{x}{4 x^{2}+7 x-2}
\end{aligned}
$$

Question

Let $f(x)=2 x^{2}$ and $g(x)=\frac{2}{x-5}$. Evaluate $(f g)(2)$ and $\left(\frac{f}{g}\right)(1)$.
(a) $(f g)(2)=-3 \quad$ and $\quad\left(\frac{f}{g}\right)(1)=-4 \quad(f g)(2)=f(2) g(2)$
(b) $(f g)(2)=-\frac{16}{3} \quad$ and $\quad\left(\frac{f}{g}\right)(1)=-1$

$$
\begin{aligned}
& =2\left(2^{2}\right) \cdot \frac{2}{2-5}=8\left(\frac{-2}{3}\right) \\
& =\frac{-16}{3}
\end{aligned}
$$

$(\mathrm{c})(f g)(2)=-\frac{16}{3} \quad$ and $\quad\left(\frac{f}{g}\right)(1)=-4$
$\left(\frac{f}{s}\right)(1)=\frac{f(1)}{g(1)}=\frac{2(1)^{2}}{\frac{2}{1-s}}$
(d) $(f g)(2)=\frac{16}{3} \quad$ and $\quad\left(\frac{f}{g}\right)(1)=-1$

$$
=\frac{2}{\frac{2}{-4}}=-4
$$

Average Rate of Change \& Difference Quotients

Figure: Consider points $(x, f(x))$ and $(x+h, f(x+h))$ on the graph of f and the straight line through them. This line is called a secant line.

Average Rate of Change: Difference Quotients
Let f be defined at x and $x+h$ for nonzero number h. The line passing through $(x, f(x))$ and $(x+h, f(x+h))$ is called a secant line. Determine its slope.

$$
\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{x+h-x}=\frac{f(x+h)-f(x)}{h}
$$

Let $(x, f(x))=\left(x_{1}, y_{1}\right)$ and

$$
M=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
(x+h, f(x+h))=\left(x_{2}, y_{2}\right)
$$

The result is called a difference quotient. It is the average rate of change of f on the interval $[x, x+h]$.

Example
For $h \neq 0$, construct and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=\frac{1}{x}$.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{1}{x+h}-\frac{1}{x}}{h} \quad \begin{array}{r}
\text { Clear the f } \\
\text { multiply }
\end{array} \\
& =\left(\frac{\left.\frac{1}{x+h}-\frac{1}{x}\right) \frac{x(x+h)}{x(x+h)}}{h} \quad\right. \\
& =\frac{\frac{1}{x+h}(x+h)}{h x(x+h))-\frac{1}{x}(x(x+h))}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x-(x+h)}{h x(x+h)} \\
& =\frac{x-x-h}{h x(x+h)} \\
& =\frac{-h}{h x(x+h)} \\
& =\frac{-1}{x(x+h)}=\frac{f(x+h)-f(x)}{h} \quad \text { for } f(x)=\frac{1}{x}
\end{aligned}
$$

Question

The difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=3 x^{2}-x$ is
(a) $6 x+3 h-1$
(b) $3 h+1$
(c) $\frac{3 h^{2}-2 x+h}{h}$
(d) $6 x-1$
(e) none of the above is the correct answer

Section 2.3: Compositions

Suppose a spherical balloon is inflated so that the radius after time t seconds is given by the function $r(t)=2 t \mathrm{~cm}$. The volume of a sphere of radius r is known to be $V(r)=\frac{4}{3} \pi r^{3}$. Note that

- r is a function of t, and
- V is a function of r, making
- V a function of t (through its dependence on r). In fact,

$$
V(t)=V(r(t))=\frac{4}{3} \pi(2 t)^{3}=\frac{32}{3} \pi t^{3} .
$$

This is an example of a composition of functions.

Composition: Definition and Notation

Let f and g be functions. Then the composite function denoted

$$
f \circ g
$$

also called the composition of f and g, is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.

The expression $f \circ g$ is read " f composed with g ", and $(f \circ g)(x)$ is read " f of g of x ".

Example
Let $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$. Evaluate each expression if possible.
(a) $(f \circ g)(1)=f(g(1))=f\left(\frac{2}{1+1}\right)=f(1)=\sqrt{1-1}=0$
(b) $(g \circ f)(1)=g\left(f(11)=g(\sqrt{1-1})=g(0)=\frac{2}{0+1}=2\right.$
(c) $(f \circ g)(0)=f(g(0))=f\left(\frac{2}{0+1}\right)=f(2)=\sqrt{2-1}: \sqrt{1}=1$

Example $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$
Find and simplify the function $F(x)=(f \circ g)(x)$.

$$
\begin{aligned}
F(x)=f(g(x))=f\left(\frac{2}{x+1}\right) & =\sqrt{\frac{2}{x+1}-1} \\
& =\sqrt{\frac{2}{x+1}-\left(\frac{x+1}{x+1}\right)}=\sqrt{\frac{2-(x+1)}{x+1}} \\
& =\sqrt{\frac{2-x-1}{x+1}}=\sqrt{\frac{1-x}{x+1}}
\end{aligned}
$$

