January 18 Math 2306 sec. 53 Spring 2019

Section 3: Separation of Variables

Solutions Defined by Integrals: The separable IVP

$$
\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0}
$$

has solution

$$
y=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

Example

Express the solution of the IVP in terms of an integral.

$$
\begin{aligned}
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi}) & =1 \\
y & =1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t
\end{aligned}
$$

Section 4: First Order Equations: Linear

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval / of definition of a solution, we can write the standard form of the equation

$$
P(x)=\frac{a_{0}(x)}{a_{1}(x)}
$$

$$
\frac{d y}{d x}+P(x) y=f(x) . \quad f(x)=\frac{g(x)}{a_{1}(x)}
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the equation

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.

The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

Motivating Example
This is not in standard form due $x^{2} \frac{d y}{d x}+2 x y=e^{x}$ to the coefficient x^{2}.

The goal is to find y as a function of x. The solution will require $x>0$ or $x<0$.

Note: the left side is $\frac{d}{d x}\left(x^{2} y\right)$. So the $x^{2} \frac{d y}{d x}+(2 x) y$
ODE is

$$
x^{2} \frac{d y}{d x}+(2 x) y
$$

$$
\frac{d}{d x}\left(x^{2} y\right)=e^{x}
$$

Integrate both sides

$$
\begin{aligned}
& \int \frac{d}{d x}\left(x^{2} y\right) d x=\int e^{x} d x \\
& x^{2} y=e^{x}+C \\
& y=\frac{e^{x}+C}{x^{2}}
\end{aligned}
$$

These are the solutions to the $O D E$

$$
\begin{gathered}
y=\frac{c}{x^{2}}+\frac{e^{x}}{x^{2}} \\
y_{c} \quad y_{p}
\end{gathered}
$$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

we wart to crate a product rule on the left. Well multiply both sides of the equation by some unknown positive function $\mu(x)$. We choose μ so that the left side becomes a product rule. Multiply by μ

$$
\mu \frac{d y}{d x}+\mu P(x) y=\mu f(x)
$$

We want the left side to be

$$
\frac{d}{d x}(\mu y)=\mu \frac{d y}{d x}+\frac{d \mu}{d x} y
$$

Matching requires

$$
\frac{d \mu}{d x} y=\mu P(x) y
$$

Divide out y

$$
\frac{d \mu}{d x}=\mu P(x) \quad \begin{gathered}
\text { Separable } \\
\text { equation }
\end{gathered}
$$

Separate the variables

$$
\begin{gathered}
\frac{1}{\mu} \frac{d \mu}{d x}=P(x) \\
\int \frac{1}{\mu} d \mu=\int P(x) d x \\
\ln \mu=\int P(x) d x \\
\mu=e^{\int P(x) d x}
\end{gathered}
$$

μ is called an integrating factor.

For this μ, the ODE is

$$
\begin{aligned}
\frac{d}{d x}(\mu y) & =\mu f(x) \\
\int \frac{d}{d x}(\mu y) d x & =\int \mu(x) f(x) d x \\
\mu y & =\int \mu(x) f(x) d x \\
y & =\frac{1}{\mu} \int \mu(x) f(x) d x \quad \text { so to over }
\end{aligned}
$$

General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

