January 19 Math 1190 sec. 63 Spring 2017

Section 1.1: Limits of Functions Using Numerical and Graphical Techniques

Recall: For a line $y=m x+b$, the slope tells us how a change in x (Δx) causes a change in $y(\Delta y)$. In fact, the slope $m=\frac{\Delta y}{\Delta x}$.

For a non-line curve, $y=f(x)$ we wanted to define slope. We still want slope to say something about how y changes if x changes. But we don't expect slope to be the same number for every x.

We want to define the slope of a tangent line.

Slope of the Tangent Line

We consider a sequence of points $Q_{1}=\left(x_{1}, f\left(x_{1}\right)\right), Q_{2}=\left(x_{2}, f\left(x_{2}\right)\right)$, and so forth in such a way that the x-values are getting closer to c. Note that the resulting secant lines tend to have slopes closer to that of the tangent line.

Slope of the Tangent Line

$$
m_{s e c}=\frac{f(x)-f(c)}{x-c}
$$

$$
m_{\text {sec }} \quad m_{\mathrm{km}}
$$

This is a limit process. We can write this as

$$
m_{t a n}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

(read "the limit as x approaches c of \ldots ").

This required us to define what a limit is.

A Working Definition of a Limit

Definition: Let f be defined on an open interval containing the number c except possibly at c. Then

$$
\lim _{x \rightarrow c} f(x)=L
$$

provided the value of $f(x)$ can be made arbitrarily close to the number L by taking x sufficiently close to c but not equal to c.

We considered the example (using a calculator)

From the values, we conclude that $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$.

Left and Right Hand Limits

In our examples, we considered x-values to the left (less than) and to the right (greater than) c. This illustrates the notion of one sided limits. We have a special notation for this.

Left Hand Limit: We write

$$
\lim _{x \rightarrow c^{-}} f(x)=L_{L}
$$

and say the limit as x approaches c from the left of $f(x)$ equals L_{L} provided we can make $f(x)$ arbitrarily close to the number L_{L} by taking x sufficiently close to, but less than c.

Left and Right Hand Limits

Right Hand Limit: We write

$$
\lim _{x \rightarrow c^{+}} f(x)=L_{R}
$$

and say the limit as x approaches c from the right of $f(x)$ equals L_{R} provided we can make $f(x)$ arbitrarily close to the number L_{R} by taking x sufficiently close to, but greater than c.

Some other common phrases:

> "from the left" is the same as "from below"
> "from the right" is the same as "from above."

Example

Plot the function $f(x)=\left\{\begin{array}{ll}x^{2}, & x<1 \\ 2, & x=1 \\ 1, & x>1\end{array}\right.$ Investigate $\lim _{x \rightarrow 1} f(x)$ using the graph.

in fact

$$
\lim _{x \rightarrow 1} f(x)=1
$$

Observations

Observation 1: The limit L of a function $f(x)$ as x approaches c does not depend on whether $f(c)$ exists or what it's value may be.

Observation 2: If $\lim _{x \rightarrow c} f(x)=L$, then the number L is unique. That is, a function can not have two different limits as x approaches a single number c.

Observation 3: A function need not have a limit as x approaches c. If $f(x)$ can not be made arbitrarily close to any one number L as x approaches c, then we say that $\lim _{x \rightarrow c} f(x)$ does not exist (shorthand DNE).

Questions

(1)True) or False It is possible that both $\lim _{x \rightarrow 3} f(x)=5$ AND $f(3)=7$.

$$
f(c) \text { doesint have to affect the hint. }
$$

(2) True or False It is possible that both $\lim _{x \rightarrow 3} f(x)=5$ AND
$\lim _{x \rightarrow 3} f(x)=7$.
Limits are unique.

