January 19 Math 1190 sec. 63 Spring 2017

Section 1.1: Limits of Functions Using Numerical and Graphical Techniques

Recall: For a line y = mx + b, the slope tells us how a change in $x (\Delta x)$ causes a change in $y (\Delta y)$. In fact, the slope $m = \frac{\Delta y}{\Delta x}$.

For a non-line curve, y = f(x) we wanted to define *slope*. We still want slope to say something about how y changes if x changes. But we don't expect slope to be the same number for every x.

We want to define the slope of a tangent line.

1 / 70

Slope of the Tangent Line

We consider a sequence of points $Q_1 = (x_1, f(x_1))$, $Q_2 = (x_2, f(x_2))$, and so forth in such a way that the x-values are getting closer to c. Note that the resulting secant lines tend to have slopes closer to that of the tangent line.

Slope of the Tangent Line

$$m_{sec} = \frac{f(x) - f(c)}{x - c}$$

MSec Men

This is a limit process. We can write this as

$$m_{tan} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

(read "the limit as x approaches c of ...").

This required us to define what a limit is.

A Working Definition of a Limit

Definition: Let f be defined on an open interval containing the number c except possibly at c. Then

$$\lim_{x\to c} f(x) = L$$

provided the value of f(x) can be made arbitrarily close to the number L by taking x sufficiently close to c but not equal to c.

We considered the example (using a calculator)

$$\lim_{x\to 0} \frac{e^{x}-1}{x} \qquad \lim_{x\to c} f(x) = L$$

$$\frac{x}{-0.1} \qquad 0.9516$$

$$-0.01 \qquad 0.9950$$

$$-0.001 \qquad 0.9995$$

$$0 \qquad \text{undefined}$$

$$0.001 \qquad 1.0005$$

$$0.01 \qquad 1.0050$$

$$0.1 \qquad 1.0517$$

From the values, we conclude that $\lim_{x\to 0} \frac{e^x-1}{x} = 1$.

5 / 70

Left and Right Hand Limits

In our examples, we considered x-values to the left (less than) and to the right (greater than) c. This illustrates the notion of **one sided limits**. We have a special notation for this.

Left Hand Limit: We write

$$\lim_{x\to c^-} f(x) = L_L$$

and say the limit as x approaches c from the left of f(x) equals L_L provided we can make f(x) arbitrarily close to the number L_L by taking x sufficiently close to, but less than c.

Left and Right Hand Limits

Right Hand Limit: We write

$$\lim_{x\to c^+}f(x)=L_R$$

and say the limit as x approaches c from the right of f(x) equals L_R provided we can make f(x) arbitrarily close to the number L_R by taking x sufficiently close to, but greater than c.

Some other common phrases:

"from the left" is the same as "from below"

"from the right" is the same as "from above."

Example

Plot the function $f(x) = \begin{cases} x^2, & x < 1 \\ 2, & x = 1 \\ 1, & x > 1 \end{cases}$ Investigate $\lim_{x \to 1} f(x)$ using the graph.

Observations

Observation 1: The limit L of a function f(x) as x approaches c does not depend on whether f(c) exists or what it's value may be.

Observation 2: If $\lim_{x\to c} f(x) = L$, then the number L is unique. That is, a function can not have two different limits as x approaches a single number c.

Observation 3: A function need not have a limit as x approaches c. If f(x) can not be made arbitrarily close to any one number L as x approaches c, then we say that $\lim_{x\to c} f(x)$ does not exist (shorthand **DNE**).

Questions

(1) True or False It is possible that both
$$\lim_{x\to 3} f(x) = 5$$
 AND $f(3) = 7$.

(2) **True or False** It is possible that both
$$\lim_{x\to 3} f(x) = 5$$
 AND $\lim_{x\to 3} f(x) = 7$.

