January 19 Math 2335 sec 51 Spring 2016

Section 1.1: The Taylor Polynomial

Suppose \boldsymbol{f} has at least \boldsymbol{n} continuous derivatives on the interval (α, β) and that a is a point in this interval. The Taylor polynomial of degree n centered at a for the function f is

$$
\begin{aligned}
& p_{n}(x)=\frac{f(a)}{0!}+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& \quad \text { In general, for } x \approx a \quad p_{n}(x) \approx f(x)
\end{aligned}
$$

Example
Use appropriate Taylor polynomials of degree 1 and 2 to approximate $\sqrt{4.1}$.

We need a function and a center.
As were trying to approximate a square root, were motivated to choose $f(x)=\sqrt{x}$.

To get a center close to" 4.1 , we con take $a=4$.

$$
\begin{array}{ll}
f(x)=\sqrt{x}=x^{1 / 2} & f(4)=\sqrt{4}=2 \\
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} & f^{\prime}(4)=\frac{1}{2}(4)^{-1 / 2}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \\
f^{\prime \prime}(x)=\frac{-1}{4} x^{-3 / 2} & f^{\prime \prime}(4)=\frac{-1}{4}(4)^{-3 / 2}=\frac{-1}{4} \cdot \frac{1}{8}=\frac{-1}{32}
\end{array}
$$

$$
\begin{array}{r}
P_{1}(x)=f(4)+f^{\prime}(4)(x-4) \\
P_{1}(x)=2+\frac{1}{4}(x-4)
\end{array}
$$

$$
\begin{gathered}
P_{2}(x)=f(4)+f^{\prime}(4)(x-4)+\frac{f^{\prime \prime}(4)}{2!}(x-4)^{2} \\
P_{2}(x)=2+\frac{1}{4}(x-4)-\frac{1 / 32}{2}(x-4)^{2}
\end{gathered}
$$

$$
P_{2}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}
$$

$$
\begin{aligned}
\sqrt{4.1}=f(4.1) \approx p_{1}(4.1) & =2+\frac{1}{4}(4.1-4) \\
& =2+\frac{1}{4}(0.1)=2+0.025 \\
& =2.025
\end{aligned}
$$

also

$$
\begin{aligned}
\sqrt{4.1}=f(4.1) & \approx p_{2}(4.1) \\
& =2+\frac{1}{4}(4.1-4)-\frac{1}{64}(4.1-4)^{2} \\
& =2+\frac{1}{4} \cdot \frac{1}{10}-\frac{1}{64} \frac{1}{100}=\frac{12959}{6400}
\end{aligned}
$$

$$
=2.02484375
$$

Results

For $f(x)=\sqrt{x}$ with $a=4$,

$$
p_{2}(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2} .
$$

Using a TI-89 with 12 digits, $\sqrt{4.1} \doteq 2.02484567313$. The difference between this value and our approximations is

approximation	$f(4.1)-p_{n}(4.1)$
$p_{1}(4.1)=2.025$	-0.00015432687
$p_{2}(4.1)=2.02484375$	0.00000192313

The technique used here is common in applied mathematics: When a problem doesn't have a direct method of solution, substitute a nearby problem for which a solution can be computed.

A word about notation...

Through out the text, the two symbols

$$
\approx \text { and } \doteq
$$

will be used to denote approximation. Usually, \approx is used with symbols, e.g.

$$
x \approx 0 \quad x \text { is approximately zero, }
$$

and \doteq is used with numbers, e.g.

$$
\pi \doteq 3.14159
$$

Sometimes it is unclear which symbol is most called for.

Example

The function

$$
g(x)=\frac{\ln (1-x)+x}{x^{2}}, \quad x<1, \quad x \neq 0
$$

is not defined at zero.
(1) Find the approximation $p_{4}(x)$ to $h(x)=\ln (1-x)$.
(2) Substitute this into g to find a natural way to define $g(0)$.
(3) Compare the result with the limit $\lim _{x \rightarrow 0} g(x)$ obtained using l'Hospital's rule.

$$
h(y)=\ln (1-x)
$$

$$
\begin{array}{ll}
P_{4}(x)=h(0)+h^{\prime}(0) x+\frac{h^{\prime \prime}(0)}{2!} x^{2}+\frac{h^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{h^{(4)}(0)}{4!} x^{4} \\
h(x)=\ln (1-x) & h(0)=\ln (1)=0 \\
h^{\prime}(x)=\frac{-1}{1-x}=-(1-x)^{-1} & h^{\prime}(0)=-1 \\
h^{\prime \prime}(x)=-(1-x)^{-2}=\frac{-1}{(1-x)^{2}} & h^{\prime \prime}(0)=-1 \\
h^{\prime \prime \prime}(x)=\frac{-2}{(1-x)^{3}} & h^{\prime \prime \prime}(0)=-2 \\
h^{(4)}(x)=\frac{-6}{(1-x)^{4}} & h^{(4)}(0)=-6
\end{array}
$$

$$
\begin{aligned}
P_{4}(x) & =-x-\frac{1}{2} x^{2}-\frac{2}{3!} x^{3}-\frac{6}{4!} x^{4} \\
& =-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}
\end{aligned}
$$

For $\quad x \approx 0 \quad \ln (1-x) \approx P_{4}(x)$

So

$$
\begin{aligned}
& g(x)=\frac{\ln (1-x)+x}{x^{2}} \approx \frac{P_{4}(x)+x}{x^{2}} \\
&=\frac{-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+x}{x^{2}} \quad \text { for } \\
& \quad x \approx 0
\end{aligned}
$$

$$
=\frac{-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}}{x^{2}}=-\frac{1}{2}-\frac{1}{3} x-\frac{1}{4} x^{2}
$$

If $x=0$, the right side is $\frac{-1}{2}$
So a "nature" way to define $g(0)$ is

$$
g(0)=\frac{-1}{2} .
$$

Let's compute $\lim _{x \rightarrow 0} g(x)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\ln (1-x)+x}{x^{2}}=\frac{0}{0} \quad \text { Use l'Hospital's } \\
& \text { rule }
\end{aligned}
$$

Section 1.2: Error in Taylor Polynomials

Consider the function $f(x)=\sin x$. The Taylor polynomials of degrees 0 through 6 centered at $a=\frac{\pi}{2}$ are given by

$$
\begin{aligned}
& p_{0}(x)=1 \\
& p_{2}(x)=1-\frac{\left(x-\frac{\pi}{2}\right)^{2}}{2} \\
& p_{4}(x)=1-\frac{\left(x-\frac{\pi}{2}\right)^{2}}{2}+\frac{\left(x-\frac{\pi}{2}\right)^{4}}{4!} \\
& p_{6}(x)=1-\frac{\left(x-\frac{\pi}{2}\right)^{2}}{2}+\frac{\left(x-\frac{\pi}{2}\right)^{4}}{4!}-\frac{\left(x-\frac{\pi}{2}\right)^{6}}{6!}
\end{aligned}
$$

These are plotted together on the next slide.

Plot of f with several Taylor polynomials

Figure: Plot of f, p_{0}, p_{2}, p_{4} and p_{6} together.

Error

The curves fit very well near the center $\pi / 2$, but the approximation breaks down as we move from the center. We can ask the question:

How good is our approximation $p_{n}(x) \approx f(x)$?

It turns out that we can (often) determine the worst case scenario for the error. Not surprisingly, it depends on the degree of the polynomial used as well as the way f behaves.

Taylor's Theorem

Theorem: Suppose f is at least $n+1$ times continuously differentiable on the interval $\alpha \leq x \leq \beta$, and let a be a point interior to the interval. For the Taylor polynomial p_{n} centered at a, define the remainder, or error in approximating $f(x)$ by $p_{n}(x)$

$$
R_{n}(x)=f(x)-p_{n}(x)
$$

R_{n} has

Then for each x in $[\alpha, \beta]$

$$
R_{n}(x)=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}\left(c_{x}\right)
$$

where c_{x} is some point between a and x.

Remark: The number c_{x} is not known. However, if we can find a bound on $\left|f^{(n+1)}(t)\right|$, we know the worst case error.

Example
Find an expression for the general Taylor polynomial of degree n for the function $f(x)=e^{x}$ centered at $a=0$. And find an expression for the associated error $R_{n}(x)$

$$
\begin{aligned}
& \text { For } a=0, \quad p_{n}(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n} \\
& f(x)=e^{x} \quad f(0)=e^{0}=1 \\
& f^{\prime}(x)=e^{x} \\
& f^{\prime \prime}(x)=e^{x} \quad \vdots \\
& \vdots \\
& f_{(0)}^{(n)}=0=1 \\
& f^{(n)}(x)=e^{x}
\end{aligned}
$$

$R_{n}(x)=\frac{(x-0)^{n+1}}{(n+1)_{1}^{!}} f^{(n+1)}\left(c_{x}\right)$ for some c_{x} between zen and x

For $f(x)=e^{x}, \quad f^{(n+1)}(x)=e^{x}$

Hence $R_{n}(x)=\frac{x^{n+1}}{(n+1)!} e^{c_{x}} \quad$ for some
C between zeno and x.
as $f(x)=p_{n}(x)+R_{n}(x)$, we can write

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\frac{x^{n+1}}{(n+1)!} e^{c_{x}}
$$

for some C_{x} between zeno and x.

Example Continued
Suppose we wish to approximate the number $e=e^{1}$ using $p_{n}(x)$ for some degree n. Use Taylor's theorem to find a degree n that will give an accuracy of ten decimal places-i.e. for which

$$
R_{n}(1) \leq 10^{-10} .
$$

We know that (for n as yet unknown)

$$
\begin{aligned}
& R_{n}(1)=\frac{1^{n+1}}{(n+1)!} e^{c} \text { for some } c \\
& \text { between } 0 \text { and } 1 \\
& \text { For } 0<c<1, e^{\circ}<e^{c}<e^{1}
\end{aligned}
$$

Since e^{x} is on incuearing function.
Since $e^{1} \leq 3$ worst case

$$
R_{n}(1)=\frac{1}{(n+1)!} e^{c} \leq \frac{1}{(n+1)!} \cdot 3
$$

If we choose n such that

$$
\frac{3}{(n+1)!} \leqslant 10^{-10} \text {, then } R_{n}(1) \leqslant 10^{-10}
$$

$$
\begin{array}{r}
\frac{3}{(n+1)!} \leqslant 10^{-10} \Rightarrow \frac{3}{10^{-10}} \leq(n+1)! \\
3 \cdot 10^{10} \leq(n+1)!
\end{array}
$$

It turns out that $13!\leq 3 \cdot 10^{10} \leq|4|$.

So we need $n+1=14 \Rightarrow n=13$
weill satisfy the error bound by taking n at least 13 .

Example: $f(x)=p_{n}(x)+R_{n}(x)$
Find the Taylor polynomial of degree 2 with the remainder for

$$
\begin{aligned}
& f(x)=\sqrt[3]{x} \quad \text { centered at } a=1 . \\
& P_{2}(x)=f(1)+\frac{f^{\prime}(1)}{1!}(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2} \quad R_{2}(x)=\frac{(x-1)^{3}}{3!} f^{\prime \prime \prime}\left(c_{x}\right) \\
& f(x)=x^{1 / 3} \quad f(1)=1 \\
& f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} \quad f^{\prime}(1)=\frac{1}{3} \\
& f^{\prime \prime}(x)=\frac{-2}{9} x^{-5 / 3} \quad f^{\prime \prime}(1)=\frac{-2}{9} \\
& f^{\prime \prime \prime}(x)=\frac{10}{27} x^{-8 / 3} \\
& \text { for some } c_{x} \text { between } \\
& x \text { and } 1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
P_{2}(x)= & 1+\frac{1}{3}(x-1)-\frac{2 / 9}{2!}(x-1)^{2}=1+\frac{1}{3}(x-1)-\frac{1}{9}(x-1)^{2} \\
& R_{2}(x)=\frac{(x-1)^{3}}{3!} \cdot \frac{10}{27} c_{x}^{-8 / 3}=\frac{5(x-1)^{3}}{81} c_{x}^{-8 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } \\
& \sqrt[3]{x}=1+\frac{1}{3}(x-1)-\frac{1}{9}(x-1)^{2}+\frac{5(x-1)^{3} c_{x}^{-8 / 3}}{81}
\end{aligned}
$$

for some C_{x} between 1 and x.

