Jan. 20 Math 2254H sec 015H Spring 2015

Recap of Sections 6.2*-6.6

New Differentiation Rules:

$$
\left.\begin{array}{rlrl}
\frac{d}{d x} \ln x & = & \frac{1}{x}, & \frac{d}{d x} e^{x} \\
\frac{d}{d x} \ln u & = & e^{x} \\
\frac{\frac{d u}{d x}}{u}, & \frac{d}{d x} e^{u} & = & e^{u} \frac{d u}{d x} \\
\frac{d}{d x} \log _{a} u & = & \frac{d}{d x} a^{u} \\
(\ln a) u
\end{array}, \quad(\ln a) a^{u} \frac{d u}{d x}\right)
$$

New Integration Rules

$$
\begin{aligned}
\int \frac{d u}{u} & =\ln |u|+C, \quad \int e^{u} d u=e^{u}+C \\
\int a^{u} d u & =\frac{a^{u}}{\ln a}+C, \\
\int \frac{d u}{\sqrt{a^{2}-u^{2}}} & =\sin ^{-1}\left(\frac{u}{a}\right)+C, \\
\int \frac{d u}{a^{2}+u^{2}} & =\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C, \\
\int \frac{d u}{u \sqrt{u^{2}-a^{2}}} & =\frac{1}{a} \sec ^{-1}\left|\frac{u}{a}\right|+C,
\end{aligned}
$$

For the second formula, we assume $a>0$ and $a \neq 1$. For the last three, we assume $a>0$.

Examples
(a)

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{3+2 x-x^{2}}} \\
&=\int \frac{d x}{\sqrt{2^{2}-(x-1)^{2}}} \begin{array}{c}
u=x-1 \\
d u=d x
\end{array} \\
&=\int \frac{d u}{\sqrt{2^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{2}\right)+C \\
&=\sin ^{-1}\left(\frac{x-1}{2}\right)+C
\end{aligned}
$$

Examples
(b)

$$
\begin{aligned}
\int_{2 \sqrt{2}}^{4} & \frac{d x}{x \sqrt{x^{2}-4}}=\left.\frac{1}{2} \sec ^{-1}\left|\frac{x}{2}\right|\right|_{2 \sqrt{2}} ^{4} \\
& =\frac{1}{2} \sec ^{-1}(2)-\frac{1}{2} \sec ^{-1}(\sqrt{2}) \\
& =\frac{1}{2}\left(\frac{\pi}{3}\right)-\frac{1}{2}\left(\frac{\pi}{4}\right) \\
& =\frac{1}{2}\left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\frac{1}{2}\left(\frac{\pi}{12}\right)=\frac{\pi}{24}
\end{aligned}
$$

Some New Limits

The Natural Log:

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty, \quad \lim _{x \rightarrow \infty} \ln x=\infty
$$

Exponentials:

$$
\lim _{x \rightarrow \infty} a^{x}=\left\{\begin{array}{cc}
\infty, & a>1 \\
0, & 0<a<1,
\end{array}\right.
$$

$$
\lim _{x \rightarrow-\infty} a^{x}=\left\{\begin{array}{cc}
0, & a>1 \\
\infty, & 0<a<1
\end{array}\right.
$$

The Inverse Tangent:

$$
\lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2}
$$

$$
\lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2}
$$

The number e as a Limit:

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e, \quad \quad \lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}
$$

Section 6.8: Indeterminate Forms \& l'Hospital's Rule

 We know that both$$
\lim _{x \rightarrow 1}\left(x^{2}-1\right)=0 \text { and } \lim _{x \rightarrow 1}(x-1)=0
$$

Evaluate $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1}$

$$
=\lim _{x \rightarrow 1} x+1=2
$$

And even though $\frac{0}{0}$ is not defined, $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$.

Evaluate Each Limit if Possible

$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$\lim _{x \rightarrow 3} \frac{x^{2}-9}{(x-3)^{2}}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)(x-3)}$

$$
=\lim _{x \rightarrow 3} \frac{x+3}{x-3} \text { Does }
$$

The form $\frac{0}{0}$

$$
\begin{gathered}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2 \\
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
\lim _{x \rightarrow 3} \frac{x^{2}-9}{(x-3)^{2}} \text { doesn't exist }
\end{gathered}
$$

We see the form $0 / 0$ when taking this limit. But the limit may or may not exist. And if it does, the form doesn't tell us what the limit might be.

$0 / 0$ is called an Indeterminate form.

Other indeterminate forms we'll encounter include

$$
\frac{ \pm \infty}{ \pm \infty}, \quad \infty-\infty, \quad 0 \infty, \quad 1^{\infty}, \quad 0^{0}, \quad \text { and } \quad \infty^{0}
$$

Theorem: I'Hospital's Rule

Suppose f and g are differentiable on an open interval $/$ containing a (except possibly at a), and suppose $g^{\prime}(x) \neq 0$ on I. If

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=0
$$

OR if

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \lim _{x \rightarrow a} g(x)= \pm \infty
$$

then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided the limit on the right exists (or is ∞ or $-\infty$).

Evaluate each-limit if possible
(a) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\frac{0}{0} \quad$ apply $l^{\prime} H$ rule

$$
=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{1}=1
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x e^{-x}=\infty \cdot 0 \\
& =\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\frac{\infty}{\infty} \\
& \begin{array}{c}
\text { apply } l_{\text {e }} H \\
\text { cale }
\end{array} \\
& x e^{-x}=\frac{e^{-x}}{\frac{1}{x}} \\
& \text { or } \\
& x e^{-x}=\frac{x}{\frac{1}{e^{-x}}}=\frac{x}{e^{x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1-1}{0}=\frac{0^{\prime \prime}}{0} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
& =\frac{0}{0}^{\prime \prime} \text { appls lHrule } \\
& =\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{1}{2}
\end{aligned}
$$

l'Hospital's Rule is not a "Fix-all"
Evaluate $\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x}=\frac{\infty}{\infty} "$ use lit rule

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{-\csc ^{2} x}{-\csc x \cot x}=\lim _{x \rightarrow 0^{+}} \frac{\csc x}{\cot x}=\frac{\infty}{\infty}^{\infty} \text { lure }_{\text {cult }}^{\prime \prime H} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-\csc x \cot x}{-\csc ^{2} x}=\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x} \\
& \frac{\cot x}{\csc x}=\frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x}}=\cos x \Rightarrow \lim _{x \rightarrow 0^{+}} \frac{\cot x}{\csc x}=\lim _{x \rightarrow 0^{+}} \cos x=1
\end{aligned}
$$

Don't apply it if it doesn't apply!

$$
\lim _{x \rightarrow 2} \frac{x+4}{x^{2}-3}=\frac{6}{1}=6
$$

BUT

$$
\lim _{x \rightarrow 2} \frac{\frac{d}{d x}(x+4)}{\frac{d}{d x}\left(x^{2}-3\right)}=\lim _{x \rightarrow 2} \frac{1}{2 x}=\frac{1}{4}
$$

Remarks:

- I'Hopital's rule only applies ddirectly to the forms $0 / 0$, or $(\pm \infty) /(\pm \infty)$.
- Multiple applications may be needed, or it may not result in a solution.
- It can be applied indirectly to the form $0 \cdot \infty$ by turning the product into a quotient.
- Derivatives of numerator and denominator are taken separately-this is NOT a quotient rule application.
- Applying it where it doesn't belong likely produces nonsense!

The form $\infty-\infty$
Evaluate the limit if possible

$$
\begin{aligned}
\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right) & =" \infty-\infty \quad \text { as } x \rightarrow 1^{+} \\
& ="-\infty+\infty " \text { as } x \rightarrow 1^{-} \\
=\lim _{x \rightarrow 1} \frac{x-1-\ln x}{(x-1) \ln x} & =\frac{0}{0} \quad \text { Use } l^{\prime} H \text { rule } \\
& =\lim _{x \rightarrow 1} \frac{1-\frac{1}{x}}{\ln x+(x-1) \frac{1}{x}} \cdot \frac{x}{x} \\
& =\lim _{x \rightarrow 1} \frac{x-1}{x \ln x+x-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{1}{\ln x+x \cdot \frac{1}{x}+1} \\
& \quad=\lim _{x \rightarrow 1} \frac{1}{\ln x+1+1}=\frac{1}{2}
\end{aligned}
$$

Indeterminate Forms $1^{\infty}, 0^{0}$, and ∞^{0}

Since the logarithm and exponential functions are continuous, and $\ln \left(x^{r}\right)=r \ln x$, we have

$$
\lim _{x \rightarrow a} F(x)=\exp \left(\ln \left[\lim _{x \rightarrow a} F(x)\right]\right)=\exp \left(\lim _{x \rightarrow a} \ln F(x)\right)
$$

provided this limit exists.

$$
\begin{aligned}
& \text { To evaluate } \lim _{x \rightarrow a} F(x) \text {, evaluate } \\
& \lim _{x \rightarrow a} \ln F(x), \text { then exponentiate. }
\end{aligned}
$$

Use this property to show that

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(1+x)^{1 / x}=e \\
& \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=1^{\infty}{ }^{\prime \prime}
\end{aligned}
$$

Take the nature \log :

$$
\begin{aligned}
\ln (1+x)^{\frac{1}{x}} & =\frac{1}{x} \ln (1+x) \\
\lim _{x \rightarrow 0} \ln (1+x)^{\frac{1}{x}} & =\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\frac{0 "}{0}
\end{aligned}
$$

Use eitt rule

$$
\lim _{x \rightarrow 0} \ln (1+x)^{\frac{1}{x}}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1}=1
$$

Exponentiate :

So

$$
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e^{1}=e
$$

$$
\begin{aligned}
& \text { Evaluate } " 0_{x \rightarrow 0^{+}} \quad \text { Evaluale } 0^{\lim _{x \rightarrow 0^{+}}} \ln x^{x} \\
& \lim _{x \rightarrow 0^{+}} \ln x^{x}=\lim _{x \rightarrow 0^{+}} x \ln x=0 \cdot(-\infty) " \\
&=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\frac{-\infty}{\infty} \quad " \quad \text { Use l'H sule } \\
&=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x} \cdot\left(-x^{2}\right)
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0^{+}}-x=0
$$

Hence

$$
\lim _{x \rightarrow 0^{+}} x^{x}=e^{0}=1
$$

