January 21 Math 2306 sec 59 Spring 2016

Section 2: Initial Value Problems

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are
(1) Does an IVP have a solution? (existence) and
(2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve $\left(\frac{d y}{d x}\right)^{2}+1=-y^{2}$.

Uniqueness
Consider the IVP

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Verify that $y=\frac{x^{4}}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.

Does $y=\frac{x^{4}}{16}$ solve $y(0)=0 ? \quad y(0)=\frac{0^{4}}{16}=0 \quad y$? !
Does it solve $\frac{d y}{d x}=x \sqrt{y}$?
Note $\frac{d y}{d x}=\frac{4 x^{3}}{16}=\frac{x^{3}}{4}$
and $x \sqrt{y}=x \sqrt{\frac{x^{4}}{16}}=x\left(\frac{x^{2}}{4}\right)=\frac{x^{3}}{4}$

So $\frac{d y}{d x}=\frac{x^{3}}{4}=x \sqrt{y}$. It solves the ODE.

Lets find a second solution to

$$
\frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0
$$

Perhaps a constant function solves it $y=C$.
Since $y(0)=0$, this would require $c=0$.
If $y=0$, then $\frac{d y}{d x}=0$ and $x \sqrt{y}=x \sqrt{0}=0$
Hence $y(x)=0$ is a secund solution to the IVP.

Section 3: First Order Equations: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x) . \quad y=\int g(x) d x+C
$$

For example, solve the ODE

$$
\begin{array}{r}
\frac{d y}{d x}=4 e^{2 x}+1 . \quad y=\int\left(4 e^{2 x}+1\right) d x \\
y=4 \cdot \frac{e^{2 x}}{2}+x+C \\
y=2 e^{2 x}+x+C
\end{array}
$$

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y \quad$ Thin is separable with

$$
g(x)=x^{3} \quad h(y)=y
$$

(b) $\frac{d y}{d x}=2 x+y \quad$ This is not sepanoble. There is no way to rewrite the's as a product of a function of only x and om e of only y.
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right) \quad$ This is not separable.

This is separable.
(d) $\frac{d y}{d t}-t e^{t-y}=0$

$$
\frac{d y}{d t}=t e^{t-y}=t e^{t} e^{-y}
$$

here $g(t)=t e^{t}$ and $h(y)=e^{-y}$

Solving Separable Equations

Recall that from $\frac{d y}{d x}=g(x)$, we can integrate both sides

$$
\int \frac{d y}{d x} d x=\int g(x) d x
$$

This is separable wi $h(s)=1$

$$
y=G(x)+C
$$

where $G(x)$ is any anti derivative of $g(x)$.

We'll use this observation!

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

$$
\begin{aligned}
& \frac{d y}{d x}=g(x) h(y) \Rightarrow \frac{1}{h(y)} \frac{d y}{d x}=g(x) \\
& \\
& p(y) \frac{d y}{d x} d x=g(x) d x
\end{aligned} \quad * \frac{d y}{d x} d x=d y
$$

$$
\int p(y) d y=\int g(x) d x
$$

$$
P(y)=G(x)+C
$$

where $P(s)$ and $G(x)$ are antidenivatives one parameter family of solutions given of $p(s)$ and $g(x)$, respectively.

Solve the ODE

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{x}{y}:-x \cdot \frac{1}{y} \Rightarrow y \frac{d y}{d x}=-x \Rightarrow y \frac{d y}{d x} d x=-x d x \\
\int y d y=\int-x d x \Rightarrow \frac{y^{2}}{2}=-\frac{x^{2}}{2}+C \\
\Rightarrow x^{2}+y^{2}=k \quad(k=2 C)
\end{gathered}
$$

Solve the ODE
Let's separate the variables.
$t e^{t-y} d t-d y=0$

$$
\begin{aligned}
& d y=t e^{t-y} d t=t e^{t} e^{-y} d t \\
& \frac{1}{e^{-y} d y}=t e^{t} d t \\
& \int e^{y} d y=\int t e^{t} d t \quad \text { Use parts on the } \\
& e^{y}=t e^{t}-\int e^{t} d t \quad u=t \quad d u=d t \\
& \text { right } \\
& \quad v=e^{t} \quad d v=e^{t} d t
\end{aligned}
$$

$$
e^{y}=t e^{t}-e^{t}+C
$$

An IVP1
Solve the ODE, then impose the initial

$$
\begin{aligned}
& \frac{d Q}{d t}=-2(Q-70), \quad Q(0)=180 \\
& \frac{1}{Q-70} \frac{d Q}{d t}=-2 \Rightarrow \frac{1}{Q-70} \frac{d Q}{d t} d t=-2 d t \\
& \int \frac{1}{Q-70} d Q=\int-2 d t
\end{aligned}
$$

$$
\ln |Q-70|=-2 t+C
$$

Let's find Q explicitly.

$$
e^{\ln |Q-70|}=e^{-2 t+c} \Rightarrow|Q-70|=e^{c} e^{-2 t}
$$

Wet $A=e^{c}$ or $-e^{c}$

$$
Q-70=A e^{-2 t} \Rightarrow 0: 70+A e^{-2 t}
$$

Impose the condition $Q(0)=180$

$$
180=70+A e^{0}=70+A \Rightarrow A=110
$$

The solution to the IVP is

$$
Q=70+110 e^{-2 t} .
$$

Caveat regarding division by $h(y)$.
Solve the IVP by separation of variables ${ }^{2}$

$$
\begin{aligned}
\frac{d y}{d x}=x \sqrt{y}, \quad y(0) & =0 \\
\frac{1}{\sqrt{y}} \frac{d y}{d x} & =x \quad y^{-1 / 2} \frac{d y}{d x} d x=x d x \\
\int y^{-1 / 2} d y & =\int x d x \quad \frac{y^{1 / 2}}{1 / 2}=\frac{x^{2}}{2}+C \\
y^{1 / 2} & =\frac{x^{2}}{4}+k \quad k=\frac{1}{2} C
\end{aligned}
$$

${ }^{2}$ Remember that one solution is $y(x)=0($ for all $x)$.

Square to get $y=\left(\frac{x^{2}}{4}+k\right)^{2}$
$\operatorname{Impose} y(0)=0 \quad 0=\left(\frac{0^{2}}{4}+k\right)^{2}=k^{2} \Rightarrow k=0$

The solution to the IVP is

$$
y=\left(\frac{x^{2}}{4}\right)^{2}=\frac{x^{4}}{16} \quad \text { i.e. } \quad y=\frac{x^{4}}{16}
$$

we lost the solution $y=0$ when we divided by \sqrt{y} - assuming it was nonzero.

Solutions Defined by Integrals
Recall (Fundamental Theorem of Calculus)

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \quad \text { and } \quad \int_{x_{0}}^{x} \frac{d y}{d x} d x=y(x)-y\left(x_{0}\right)
$$

Use this to solve

$$
\begin{gathered}
\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0} \\
\frac{d y}{d t}=g(t) \Rightarrow \int_{x_{0}}^{x} \frac{d y}{d t} d t=\int_{x_{0}}^{x} g(t) d t \\
y(x)-y\left(x_{0}\right)=\int_{x_{0}}^{x} g(t) d t
\end{gathered}
$$

$$
y(x)-y_{0}=\int_{x_{0}}^{x} g(t) d t
$$

Example: Express the solution of the IVP in terms of an integral.

$$
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi})=1
$$

$$
\begin{aligned}
& g(t)=\sin \left(t^{2}\right) \\
& x_{0}=\sqrt{\pi}, y_{0}=1
\end{aligned}
$$

Using our formulation

$$
y(x)=1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t .
$$

