January 21 Math 2335 sec 51 Spring 2016

Section 1.2: Error in Taylor Polynomials

Taylor's Theorem: Suppose f is at least $n+1$ times continuously differentiable on the interval $\alpha \leq x \leq \beta$, and let a be a point interior to the interval. For the Taylor polynomial p_{n} centered at a, define the remainder, or error in approximating $f(x)$ by $p_{n}(x)$

$$
R_{n}(x)=f(x)-p_{n}(x)
$$

Then for each x in $[\alpha, \beta]$

$$
R_{n}(x)=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}\left(c_{x}\right)
$$

where c_{x} is some point between a and x.

Remark: The number c_{x} is not known. However, if we can find a bound on $\left|f^{(n+1)}(t)\right|$, we know the worst case error.

Example: $f(x)=p_{n}(x)+R_{n}(x)$

Find the Taylor polynomial of degree 2 with the remainder for

$$
f(x)=\sqrt[3]{x} \quad \text { centered at } a=1 .
$$

Last time, we determined that

$$
p_{2}(x)=1+\frac{1}{3}(x-1)-\frac{1}{9}(x-1)^{2} \quad \text { and } \quad R_{2}(x)=\frac{5(x-1)^{3}}{81 c_{x}^{8 / 3}}
$$

where c_{x} is some number between x and 1 .

Bounding Error

When we refer to bounding the error in approximating $f(x)$ by $p_{n}(x)$, we mean finding some number M such that

$$
\left|f(x)-p_{n}(x)\right| \leq M .
$$

here x is assumed fixed.

When we refer to bounding the error on an interval $\alpha \leq x \leq \beta$, we mean finding some number K such that

$$
\left|f(x)-p_{n}(x)\right| \leq K \quad \text { for all } x \text { in the interval } \quad \alpha \leq x \leq \beta
$$

Example
Use p_{2} and R_{2} for $f(x)=\sqrt[3]{x}$ found in the previous example to bound the error when p_{2} is used to approximate f on the interval $[1 / 2,3 / 2]$.
$R_{2}(x)=\frac{s(x-1)^{3}}{81 c_{x}^{8 / 3}}$ for some c_{x} between x and 1 .
Note $\left|f(x)-\rho_{2}(x)\right|=\left|R_{2}(x)\right|=\left|\frac{5(x-1)^{3}}{81 c_{x}^{8 / 3}}\right|=\frac{5}{81} \frac{|x-1|^{3}}{c_{x}^{8 / 3}}$
For $\frac{1}{2} \leq x \leq \frac{3}{2} \Rightarrow \frac{1}{2}-1 \leq x-1 \leq \frac{3}{2}-1 \Rightarrow \frac{-1}{2} \leq x-1 \leq \frac{1}{2}$ ie. $|x-1| \leq \frac{1}{2}$
so the longest $|x-1|^{3}$ can be is $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$

Since c_{x} must be between 1 and x
we hove

$$
\frac{1}{2} \leq c_{x} \leq \frac{3}{2}
$$

For $\frac{1}{2} \leq c_{x} \leq \frac{3}{2},\left(\frac{1}{2}\right)^{8 / 3} \leq c_{x}^{8 / 3} \leq\left(\frac{3}{2}\right)^{8 / 3}$
Taking reciprocals $\left(\frac{3}{2}\right)^{-8 / 3} \leq c_{x}^{-8 / 3} \leq\left(\frac{1}{2}\right)^{-8 / 3}$
So $\quad c_{x}^{-8 / 3} \leq\left(\frac{1}{2}\right)^{-8 / 3}=2^{8 / 3}=4 \cdot 2^{2 / 3}$
That is, $\frac{1}{C_{x}^{8 / 3}}$ is at most $4 \cdot 2^{2 / 3}$

Hence

$$
\begin{aligned}
\left|R_{2}(x)\right|=\frac{5}{81} \frac{\mid x-11^{3}}{c_{x}^{8 / 3}} & \leqslant \frac{5}{81}\left(\frac{1}{8}\right) \cdot 4 \cdot 2^{2 / 3} \\
& =0.048994
\end{aligned}
$$

If we use $p_{2}(x)$ to approximate $\sqrt[3]{x}$ for any x between $\frac{1}{2}$ and $\frac{3}{2}$ the error will be at most 0.049994 .

Well Known Taylor Polynomials with Remainders

See page 13 equations (1.13)-(1.17).

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\frac{x^{n+1}}{(n+1)!} e^{c}
$$

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \cos (c)
$$

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+(-1)^{n+1} \frac{x^{2 n+2}}{(2 n+2)!} \cos (c)
$$

Continued...

$\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\frac{x^{n+1}}{1-x} \quad x \neq 1 \quad$ (an exact formula)
$(1+x)^{\alpha}=1+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{2} x^{n}+\binom{\alpha}{n+1} x^{n+1}(1+c)^{\alpha-(n+1)}$

Here, α is a real number,

$$
\binom{\alpha}{0}=1, \quad \text { and } \quad\binom{\alpha}{k}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!}
$$

Note $\alpha-k+1=\alpha-(k-1)$ e.g $\quad\binom{\alpha}{1}=\frac{\alpha}{1!} \quad\binom{\alpha}{2}=\frac{\alpha(\alpha-1)}{2!}$

$$
\binom{\alpha}{3}=\frac{\alpha(\alpha-1)(\alpha-2)}{3!} \text { and so on. }
$$

Example
Use the last formulation to express $p_{3}(x)+R_{3}(x)$ for

$$
f(x)=(1+x)^{3 / 2}
$$

Here, $\alpha=\frac{3}{2}$

$$
P_{3}(x)+R_{3}(x)=\underbrace{1+\binom{3 / 2}{1} x+\binom{3 / 2}{2} x^{2}+\binom{3 / 2}{3}}_{P_{3}} x^{3}+\underbrace{\binom{3 / 2}{4} x^{4}(1+c)^{\frac{3}{2}-4}}_{R_{3}}
$$

$$
\binom{3 / 2}{1}=\frac{3 / 2}{1!}=\frac{3}{2}, \quad\binom{3 / 2}{2}=\frac{\frac{3}{2}\left(\frac{3}{2}-1\right)}{2!}=\frac{\frac{3}{2} \cdot \frac{1}{2}}{2}=\frac{3}{8}
$$

$$
\begin{aligned}
& \binom{3 / 2}{3}=\frac{3 / 2(3 / 2-1)(3 / 2-2)}{3!}=\frac{3 / 2(3 / 2-1)(3 / 2-2)}{2!\cdot 3}=\frac{3}{8} \frac{-1 / 2}{3}=\frac{-1}{16} \\
& \binom{3 / 2}{4}=\frac{3 / 2(3 / 2-1)(3 / 2-2)(3 / 2-3)}{4!}=\frac{3 / 2(3 / 2-1)(3 / 2-2)}{3!} \cdot \frac{(3 / 2-3)}{4}=\frac{-1}{16} \cdot \frac{-3 / 2}{4}=\frac{3}{128}
\end{aligned}
$$

So

$$
p_{3}(x)=1+\frac{3}{2} x+\frac{3}{8} x^{2}-\frac{1}{16} x^{3}
$$

and

$$
\begin{aligned}
R_{3}(x)=\frac{3}{128} x^{4}(1+c)^{-5 / 2} . & \text { for some } \\
& c \text { between } \\
& x \text { and } 0 .
\end{aligned}
$$

Bounding Error

* $R_{2 n}(x)=(-1)^{n+1} \frac{x^{2 n+2}}{(2 n+2)!} \cos C$

Use the remainder term for $f(x)=\cos x$ to bound the error when $p_{2}(x)=1-x^{2} / 2$ is used to approximate f on the interval $[-\pi / 4, \pi / 4]$.

If $2 n=2$, then $n=1$

$$
R_{2}(x)=(-1)^{1+1} \frac{x^{2+2}}{(2+2)!} \cos C=\frac{x^{4}}{4!} \cos C
$$

for some c between 0 and x.

$$
\begin{array}{ll}
\left|R_{2}(x)\right|=\frac{|x|^{4}}{4!}|\cos c| & \text { For } \quad-\pi / 4 \leq x \leq \pi / 4 \\
|x| \leq \pi / 4
\end{array}
$$

So $|x|^{4} \leqslant\left(\frac{\pi}{4}\right)^{4}$

For $-\frac{\pi}{4} \leq c \leq \frac{\pi}{4}$

$$
\frac{1}{\sqrt{2}} \leq|\cos c| \leq 1
$$

Hence $\left.\left.\left|R_{2}(x)\right|=\frac{1}{24} \right\rvert\, x\right)^{4}|\operatorname{Corc}| \leq \frac{1}{24}\left(\frac{\pi}{4}\right)^{4} \cdot 1$

$$
\dot{=} 0.015854
$$

Accurding to TI -89

$$
\begin{aligned}
& \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \doteq 0.707107 \\
& 1-\frac{1}{2}\left(\frac{\pi}{4}\right)^{2} \doteq 0.691575 \\
& \cos \frac{\pi}{4}-P_{2}\left(\frac{\pi}{4}\right)=0.015532
\end{aligned}
$$

New Polynomials from Old
Recall: $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\frac{x^{n+1}}{1-x} \quad x \neq 1$
(a) Use the substitution $x=-t^{2}$ to find a polynomial and remainder for

$$
\begin{gathered}
f(t)=\frac{1}{1+t^{2}} . \\
\frac{1}{1+t^{2}}=\frac{1}{1-\left(-t^{2}\right)}=1+\left(-t^{2}\right)+\left(-t^{2}\right)^{2}+\left(-t^{2}\right)^{3}+\ldots+\left(-t^{2}\right)^{n}+\frac{\left(-t^{2}\right)^{n+1}}{1-\left(-t^{2}\right)} \\
=1-t^{2}+t^{4}-t^{6}+\ldots+(-1)^{n} t^{2 n}+\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}
\end{gathered}
$$

$$
\frac{1}{1+t^{2}}=1-t^{2}+t^{4}-t^{6}+\ldots+(-1)^{n} t^{2 n}+\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}
$$

for $-t^{2} \neq 1$
(note $-t^{2} \neq 1$ for all reel

$$
t .)
$$

A Mean Value Theorem

Theorem: (Integral Mean Value Theorem) Let $w(x)$ be a nonnegative integrable function on (a, b) and let $f(x)$ be continuous on $[a, b]$. Then there exists a point c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) w(x) d x=f(c) \int_{a}^{b} w(x) d x
$$

Specie case: If $w(x)=1$, then $\int_{a}^{b} w(x) d x=\int_{a}^{b} d x=b-a$ In this case, it reduces to the foniliar

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

Example of the Mean Value Theorem

For integer $k \geq 0$

$$
\int_{0}^{x} \frac{t^{k}}{1+t^{2}} d t=\frac{1}{1+c^{2}} \int_{0}^{x} t^{k} d t
$$

for some c between 0 and x.
Here, $f(t)=\frac{1}{1+t^{2}}$ and $w(t)=t^{k}$
Note $\int_{0}^{x} \frac{t^{k}}{1+t^{2}} d t=\frac{1}{1+c^{2}}\left[\left.\frac{t^{k+1}}{k+1}\right|_{0} ^{x}=\frac{1}{1+c^{2}} \cdot \frac{x^{k+1}}{k+1}\right.$
for sum e c between O and X.

Example
(b) Use the results for the function $f(t)=\frac{1}{1+t^{2}}$, and the fact that

$$
\tan ^{-1}(x)=\int_{0}^{x} \frac{d t}{1+t^{2}}
$$

to find a Taylor polynomial with remainder for the function $g(x)=\tan ^{-1}(x)$.

We had $\frac{1}{1+t^{2}}=1-t^{2}+t^{4}-t^{6}+\ldots+(-1)^{n} t^{2 n}+\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}$

$$
\begin{aligned}
& \text { so } \int_{0}^{x} \frac{1}{1+t^{2}} d t=\int_{0}^{x}\left(1-t^{2}+t^{4}-t^{6}+\ldots+(-1)^{n} t^{2 n}+\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}}\right) d t \\
& \tan ^{-1} x=\int_{0}^{x}\left(1-t^{2}+t^{4}-t^{6}+\ldots+(-1)^{n} t^{2 n}\right) d t+\int_{0}^{x} \frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}} d t
\end{aligned}
$$

$$
\tan ^{-1} x=t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\ldots+\left.(-1)^{n} \frac{t^{2 n+1}}{2 n+1}\right|_{0} ^{x}+\frac{(-1)^{n+1}}{1+c^{2}} \int_{0}^{x} t^{2 n+2} d t
$$

MUT

$$
=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+\frac{(-1)^{n+1}}{1+c^{2}} \cdot \frac{x^{2 n+3}}{2 n+3}
$$

for sone c betweon 0 and x.

So for $\tan ^{-1} x$

$$
P_{2 n+1}(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

and
$R_{2 n+1}(x)=\frac{(-1)^{n+1}}{1+c^{2}} \frac{x^{2 n+3}}{2 n+3} \quad$ for c between

Using Taylor Polynomials
Use a Taylor polynomial with remainder to evaluate the limit $\lim _{x \rightarrow 0} \frac{1+x^{2}-e^{x^{2}}}{x^{4}} \quad$ From before

$$
e^{t}=1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots+\frac{t^{n}}{n!}+\frac{t^{n+1}}{(n+1)!} e^{c}
$$

for some c between 0 and t
Taking $t=x^{2}$

$$
e^{x^{2}}=1+x^{2}+\frac{\left(x^{2}\right)^{2}}{2!}+\frac{\left(x^{2}\right)^{3}}{3!}+\ldots+\frac{\left(x^{2}\right)^{n}}{n!}+\frac{\left(x^{2}\right)^{n+1}}{(n+1)!} e^{c}
$$

for sone c where $0<c<x^{2}$

$$
\begin{aligned}
e^{x^{2}} & =1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\ldots+\frac{x^{2 n}}{n!}+\frac{x^{2 n+2}}{(n+1)!} e^{c} \\
\frac{1+x^{2}-e^{x^{2}}}{x^{4}} & =\frac{1+x^{2}-\left(1+x^{2}+\frac{x^{4}}{2!}+\ldots+\frac{x^{2 n}}{n!}+\frac{x^{2 n+2}}{(n+1)!} e^{c}\right)}{x^{4}} \\
& =\frac{-\frac{x^{4}}{2!}-\frac{x^{6}}{3!}-\ldots-\frac{x^{2 n}}{n!}-\frac{x^{2 n+2}}{(n+1)!} e^{c}}{x^{4}} \\
& =\frac{-1}{2}-\frac{x^{2}}{3!}-\ldots-\frac{x^{2 n-4}}{n!}-\frac{x^{2 n-2}}{(n+1)!} e^{c}
\end{aligned}
$$

Take $x \rightarrow 0$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1+x^{2}-e^{x^{2}}}{x^{4}} & =\lim _{x \rightarrow 0}\left(\frac{-1}{2}-\frac{x^{2}}{3!} \cdots-\frac{x^{2 n-4}}{n!}-\frac{x^{\ln -2}}{(n+1)!} e^{c}\right) \\
& =\frac{-1}{2}
\end{aligned}
$$

