Jan. 22 Math 2254H sec 015H Spring 2015

Section 7.1: Integration by Parts

Recall the product rule:

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

Let's subtract $g f^{\prime}$ from both sides and consider an anti-derivative:

$$
\begin{aligned}
f(x) g^{\prime}(x) & =\frac{d}{d x}[f(x) g(x)]-g(x) f^{\prime}(x) \Longrightarrow \\
\int f(x) g^{\prime}(x) d x & =\int\left\{\frac{d}{d x}[f(x) g(x)]-g(x) f^{\prime}(x)\right\} d x \\
& =\int \frac{d}{d x}[f(x) g(x)] d x-\int g(x) f^{\prime}(x) d x
\end{aligned}
$$

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$$

Let $u=f(x)$, then $d u=f^{\prime}(x) d x$

$$
v=g(x) \text {, then } d v=g^{\prime}(x) d x
$$

$$
\int u d v=u v-\int v d u
$$

$$
\int u d v=u v-\int v d u
$$

Evaluate

$$
\int x \cos x d x
$$

Choices:
$u=x$ and $d v=\cos x d x$
or
$u=\cos x$ and $d v=x d x$

Let $w=x \quad d u=d x$

$$
v=\sin x \quad d v=\cos x d x
$$

$$
\begin{aligned}
\int x \cos x d x & =x \sin x-\int \sin x d x \\
& =x \sin x+\cos x+C
\end{aligned}
$$

$$
\int u d v=u v-\int v d u
$$

Evaluate
Let $u=y^{2} \quad d u=2 y d y$
$\int y^{2} e^{y} d y$

$$
v=e^{y} \quad d v=e^{y} d y
$$

$$
=y^{2} e^{y}-\int 2 y e^{y} d y
$$

$$
u=2 y \quad d u=2 d y
$$

$$
=y^{2} e^{b}-\left(2 y e^{y}-\int 2 e^{y} d y\right)
$$

$$
v=e^{y} \quad d v=e^{y} d y
$$

$$
=y^{2} e^{y}-2 y e^{y}+2 e^{y}+C
$$

$$
\begin{array}{ll}
\int u d v=u v-\int v d u & \text { Let } \begin{array}{ll}
u=x^{3} & d u=3 x^{2} d x \\
\text { Evaluate } & v=? \quad d v=\ln x d x \\
\int x^{3} \ln x d x & \text { Try again } \\
=\frac{x^{4}}{4} \ln x-\int \frac{x^{4}}{4} \cdot \frac{1}{x} d x & u=\ln x \\
& v=\frac{x^{4}}{4} \\
=\frac{x^{4}}{4} \ln x-\frac{1}{4} \int x^{3} d x & d v=\frac{1}{x} d x \\
& =\frac{x^{4}}{4} \ln x-\frac{1}{16} x^{4}+C
\end{array}
\end{array}
$$

Another unusual use of Int. by Parts

$$
\begin{aligned}
& \text { Evaluate the integral } \mathcal{I} \text { where } \\
& =\int e^{x} \cos x d x \\
& =e^{x} \sin x-\int e^{x} \sin x d x \\
& =e^{x} \sin x-\left(-e^{x} \cos x+\int e^{x} \cos x d x\right) \\
& I=e^{x} \sin x+e^{x} \cos x-I+2 C
\end{aligned}
$$

$$
\text { Let } u=e^{x} \quad d u=e^{x} d x
$$

$$
v=\sin x \quad d v=\cos x d x
$$

$$
\text { Let } u=e^{x} \quad d u=e^{x} d x
$$

$$
v=-\cos x \quad d v=\sin x d x
$$

Add I to both sides to get

$$
\begin{aligned}
2 I & =e^{x} \sin x+e^{x} \cos x+2 C \\
\Rightarrow & I=\frac{1}{2} e^{x} \sin x+\frac{1}{2} e^{x} \cos x+C \\
* \int e^{x} \sin x d x & =e^{x} \sin x-I \\
& =\frac{1}{2} e^{x} \sin x-\frac{1}{2} e^{x} \cos x+k
\end{aligned}
$$

Definite integrals

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} g(x) f^{\prime}(x) d x
$$

Evaluate $\int_{1}^{e} \ln x d x=$

$$
\left.x \ln x\right|_{1} ^{e}-\int_{1}^{e} x \cdot \frac{1}{x} d x
$$

$$
\begin{array}{ll}
u=\ln x & d u=\frac{1}{x} d x \\
v=x & d v=d x
\end{array}
$$

$$
\begin{aligned}
& =\left.x \ln x\right|_{1} ^{e}-\left[\left.x\right|_{1} ^{e}\right. \\
& \quad=e \ln e-1 \ln 1-[e-1]=e-e+1=1
\end{aligned}
$$

Application

The region in the plane bounded between the curves $y=e^{x}, x=2$, $y=0$ and $x=0$ is rotated about the y-axis to form a solid. Find the volume of the solid.

Volume of one shall

$$
\begin{aligned}
V_{S} & =2 \pi r h \Delta x \\
& =2 \pi x e^{x} \Delta x
\end{aligned}
$$

$$
r=x
$$

height

$$
h=e^{x}
$$

Totde Volume

$$
\begin{array}{rlr}
V & =\int_{0}^{2} 2 \pi x e^{x} d x & u=x
\end{array} \quad d u=d x
$$

