January 22 Math 3260 sec. 51 Spring 2020

Section 1.3: Vector Equations

We defined vectors in \mathbb{R}^n along with two operations. Scalars in our context are **real numbers**.

For **x** and **y** in \mathbb{R}^n and scalar c

Scalar multiplication
$$c\mathbf{x} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}$$
.

Vector Addition:
$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

Algebraic Properties on \mathbb{R}^n

The **zero vector** in \mathbb{R}^n is the *n*-tuple of all zeros. It is denoted **0** (or 0).

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars c and d^1

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$(\mathsf{v}) \quad c(\mathsf{u} + \mathsf{v}) = c\mathsf{u} + c\mathsf{v}$$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

$$(vi) \quad (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(iii)
$$u + 0 = 0 + u = u$$

(vii)
$$c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$$

(iv)
$$u + (-u) = -u + u = 0$$
 (viii) $1u = u$

(viii)
$$1\mathbf{u} = \mathbf{u}$$

¹The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3\mathbf{v}_1$$
, $-2\mathbf{v}_1+4\mathbf{v}_2$, $\frac{1}{3}\mathbf{v}_2+\sqrt{2}\mathbf{v}_1$, and $\mathbf{0}=0\mathbf{v}_1+0\mathbf{v}_2$.

3/54

Example

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$. Determine if \mathbf{b} can

be written as a linear combination of
$$\mathbf{a}_1$$
 and \mathbf{a}_2 .

Q: Are those numbers (S calars) X_1 and X_2 such

that $X_1 \cdot \overline{A}_1 + X_2 \cdot \overline{A}_2 = \overline{b}$?

Set up $X_1 \cdot \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} + X_2 \cdot \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$

opnation $\begin{bmatrix} X_1 \\ -2X_1 \\ -X_1 \end{bmatrix} + \begin{bmatrix} 3X_2 \\ 0 \\ 2X_2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$

$$\begin{bmatrix} X_1 + 3X_2 \\ -2X_1 \\ -X_1 + 2X_2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$$

This reguines

$$X_1 + 3X_2 = -2$$

 $-2X_1 = -2$
 $-X_1 + 2X_2 = -3$
 0 gives of system of

Bis a linear combination of the and to if this system is consistent.

We can use an augmented matrix

The system is ansistent \Rightarrow This a linear combination of \vec{a}_i and \vec{a}_e .

Infact, X = 1 and Xz = -1.

That is, b= a, -az.

Some Convenient Notation

Letting
$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$, and in general $\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$, for

j=1,...,n, we can denote the $m \times n$ matrix whose columns are these vectors by

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{2n} \ \vdots \ \vdots \ \vdots \ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

Note that each vector \mathbf{a}_i is a vector in \mathbb{R}^m .

Vector and Matrix Equations

The vector equation

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}]. \tag{1}$$

In particular, **b** is a linear combination of the vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of **Span**

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$ is denoted by

$$\mathsf{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}=\mathsf{Span}(\mathcal{S}).$$

It is called the subset of \mathbb{R}^n spanned by (a.k.a. generated by) the set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

To say that a vector **b** is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ means that there exists a set of scalars c_1, \dots, c_p such that **b** can be written as

$$c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p$$
.

Span

If **b** is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, then $\mathbf{b} = c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p$. From the previous result, we know this is equivalent to saying that the vector equation

$$x_1\mathbf{v}_1+\cdots+x_p\mathbf{v}_p=\mathbf{b}$$

has a solution. This is in turn the same thing as saying the linear system with augmented matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p \mathbf{b}]$ is consistent.

Examples

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, and $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 4 \\ -2 \end{bmatrix}$.

(a) Determine if
$$\mathbf{b} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$
 is in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.

$$\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{b} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & 2 \\ 2 & -2 & 1 \end{bmatrix}$$

(ret) (0 0) [0 0) [0 0] [0 0] [0 0]

- · The system is in consistent.
- · B is not a livear combination of a, as
- · bis not in Spon { a, , a,}

(b) Determine if
$$\mathbf{b} = \begin{bmatrix} 5 \\ -5 \\ 10 \end{bmatrix}$$
 is in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.

$$\begin{bmatrix} 1 & -1 & 5 \\ 1 & 4 & -5 \\ 2 & -2 & 10 \end{bmatrix} \xrightarrow{\text{ref}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

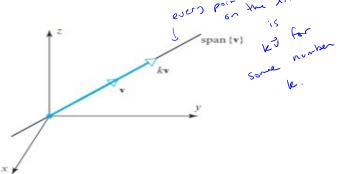
Another Example

Give a geometric description of the subset of
$$\mathbb{R}^2$$
 given by $Span\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\}$. A vector \ddot{u} is in $Span\left\{\begin{bmatrix}0\\0\end{bmatrix}\right\}$ if $\ddot{u} = x$, $\begin{bmatrix}0\\0\end{bmatrix} = \begin{bmatrix}x\\0\end{bmatrix}$ for any scalar x , . Note these vectors (a.k.a points) are $(x, 0)$.

This is the x -axis in the Cartesian place.

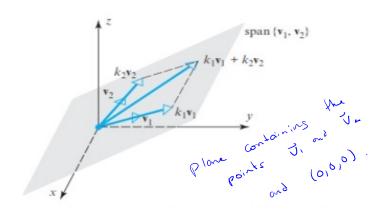
Span $\{\mathbf{v}\}$ in \mathbb{R}^3

If \mathbf{v} is any nonzero vector in \mathbb{R}^3 , then Span $\{\mathbf{v}\}$ is a line through the origin parallel to \mathbf{v} .



Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ in \mathbb{R}^3

If \mathbf{v}_1 and \mathbf{v}_2 are nonzero, and nonparallel vectors in \mathbb{R}^3 , then Span $\{\mathbf{v}_1,\mathbf{v}_2\}$ is a plane containing the origin parallel to both vectors.



Example

Let $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (0, 2)$ in \mathbb{R}^2 . Show that for every pair of real numbers a and b, that (a, b) is in Span $\{\mathbf{u}, \mathbf{v}\}$.

we now to show that
$$X_1 \ddot{u} + X_2 \vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$$
 is always consider t (i.e. for any (a_1b)).

Consider $\begin{bmatrix} \ddot{u} & \ddot{v} & \begin{bmatrix} a \\ b \end{bmatrix} \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & a \\ 1 & 2 & b \end{bmatrix} \xrightarrow{-R_1 + R_2 + R_2} \begin{bmatrix} 1 & 0 & a \\ 6 & 2 & b - a \end{bmatrix}$$

The system is always consirtent. In fact. $\begin{bmatrix} q \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{b \cdot q}{2} \begin{bmatrix} 0 \\ 2 \end{bmatrix}$