January 22 Math 3260 sec. 51 Spring 2020

Section 1.3: Vector Equations

We defined vectors in R” along with two operations. Scalars in our
context are real numbers.

For x and y in R” and scalar ¢

> Scalar multiplication cx =

» Vector Addition: X +y =
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Algebraic Properties on R”

The zero vector in R” is the n-tuple of all zeros. It is denoted 0 (or 0).

For every u, v, and w in R” and scalars ¢ and d"

() u+v=v+u

(i) (u+v)+w=u+(v+w)

(i) u+0=0+u=u

(iv) u+(-u)=-u+u=0

"The term —u denotes (—1)u.

c(u+v)=cu+cv
(c+du=cu+du

¢(du) = d(cu) = (cd)u
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Definition: Linear Combination

A linear combination of vectors vy,... v, in R" is a vector y of the form
Y =C{Vi+ -+ CpVp
where the scalars cy, . .., ¢, are often called weights.

For example, suppose we have two vectors vy and v,. Some linear
combinations include

’
vy, —2vi+4vp, oVa+ Vv2vy, and 0= 0vy + Ovs.

2

(
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Example

1 3 -2
leta;=| -2 |,ao=| 0 |,andb=| -2
—1 2 -3

be written as a linear combination of a; and as.
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Some Convenient Notation

art a2 ayj
. a1 ao2 . aoj
Letting a; = . , A0 = , and in general a; = , for
ami amp

j=1,...,n, we can denote the m x n matrix whose columns are these
vectors by

ayn a2 -+ Ain
axy ap -+ Azp

[ay a2 -+ ap = . . . .
am ame amn

Note that each vector a; is a vector in RM,
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Vector and Matrix Equations

The vector equation

Xja1 + Xoa2+ -+ xpap=Db

has the same solution set as the linear system whose augmented
matrix is

[ay a2 --- ap b]. (1)

In particular, b is a linear combination of the vectors a4, ..., a, if and

only if the linear system whose augmented matrix is given in (1) is
consistent.
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Definition of Span

Let S = {vy,...,Vp} be a set of vectors in R". The set of all linear
combinations of vy, ..., Vv, is denoted by

Span{vi,...,Vvp} = Span(S).

It is called the subset of R” spanned by (a.k.a. generated by) the
set {vy,...,Vp}.

To say that a vector b is in Span{vy,...,v,} means that there exists a
set of scalars ¢y, ..., Cp such that b can be written as
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Span

If b isin Span{vy,...,Vp}, thenb = ¢yv4 + - + ¢pVp. From the
previous result, we know this is equivalent to saying that the vector
equation

X1V +---+Xpr:b
has a solution. This is in turn the same thing as saying the linear
system with augmented matrix [v4 --- Vv, b] is consistent.
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Examples
1 —1

Leta;=| 1 |,andas = 4
2 -2
4
(a) Determineifb= | 2 | isin Span{as,a>}.
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5
(b) Determineifb= | —5 | isin Span{ay,az}.
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Another Example

Give a geometric description of the subset of R? given by

Spa”{“”- DN pecher T in SPe {083 iF

Y ) _ >Z’| er. 0\,\3 SCA\C‘-" ')(\ ;
w = X o - o

pele Meese Ve (4ars (a.\l-u& Pdv\‘\'i) or e

(X, ,0)

This s %\lz’ n- ax\S A ‘V\Mb

Corbesiom glome .

January 17, 2020

15/54



Span{v} in R3
If v is any nonzero vector in R3, then Span{v} is a line through the
origin parallel to v. ~ S
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Span{vy,vz} in R3
If vi and v, are nonzero, and nonparallel vectors in R3, then
Span{vy, vz} is a plane containing the origin parallel to both vectors.

January 17, 2020 17/54



Example

Letu=(1,1) and v = (0,2) in R2. Show that for every pair of real
numbers a and b, that (a, b) is in Span{u, v}.
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