January 22 Math 3260 sec. 55 Spring 2020

Section 1.3: Vector Equations
We defined vectors in \mathbb{R}^{n} along with two operations. Scalars in our context are real numbers.

For \mathbf{x} and \mathbf{y} in \mathbb{R}^{n} and scalar c

- Scalar multiplication $c \mathbf{x}=\left[\begin{array}{c}c x_{1} \\ c x_{2} \\ \vdots \\ c x_{n}\end{array}\right]$.
- Vector Addition: $\mathbf{x}+\mathbf{y}=\left[\begin{array}{c}x_{1}+y_{1} \\ x_{2}+y_{2} \\ \vdots \\ x_{n}+y_{n}\end{array}\right]$

Algebraic Properties on \mathbb{R}^{n}

The zero vector in \mathbb{R}^{n} is the n-tuple of all zeros. It is denoted 0 (or $\overrightarrow{0}$).
For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d^{1}
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vi) $\quad(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0} \quad$ (viii) $\mathbf{1 u}=\mathbf{u}$
${ }^{1}$ The term $-\mathbf{u}$ denotes $(-1) \mathbf{u}$.

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{p}$ in \mathbb{R}^{n} is a vector \mathbf{y} of the form

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

where the scalars c_{1}, \ldots, c_{p} are often called weights.
For example, suppose we have two vectors \mathbf{v}_{1} and \mathbf{v}_{2}. Some linear combinations include

Example
Let $\mathbf{a}_{1}=\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-2 \\ -2 \\ -3\end{array}\right]$. Determine if \mathbf{b} can be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}.
Q: Are than numbers (scalars) x_{1}, and x_{2} such that $x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}$?

Set up the equation:

$$
\begin{aligned}
& \text { equation: } \\
& x_{1}\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right] ? \\
& {\left[\begin{array}{c}
x_{1} \\
-2 x_{1} \\
-x_{1}
\end{array}\right]+\left[\begin{array}{c}
3 x_{2} \\
0 \\
2 x_{2}
\end{array}\right] } ?\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1}+3 x_{2} \\
-2 x_{1} \\
-x_{1}+2 x_{2}
\end{array}\right] } ?\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right] \\
&=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right]
\end{aligned}
$$

January 17, $2020 \quad 4 / 54$
requincs

$$
\begin{aligned}
x_{1}+3 x_{2} & =-2 \\
-2 x_{1} & =-2 \\
-x_{1}+2 x_{2} & =-3
\end{aligned}
$$

Let's detenmine if the system is consistent by using an angmented matrix.

$$
\left.\left[\begin{array}{rrr}
1 & 3 & -2 \\
-2 & 0 & -2 \\
-1 & 2 & -3
\end{array}\right] \xrightarrow{\text { ref }} \quad \begin{array}{ccc}
\text { (bs } T I) \\
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

The syster is consistert, so \vec{b} is a lineer condinction of \vec{a}_{1} and \vec{a}_{2}

In fact, we see that $x_{1}=1$ and $x_{2}=-1$ so $\quad \vec{b}_{0}=\vec{a}_{1}-\vec{a}_{2}$

$$
\vec{b}=\vec{a}_{1}-\vec{a}_{2}
$$

Some Convenient Notation

Letting $\mathbf{a}_{1}=\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right]$, and in general $\mathbf{a}_{j}=\left[\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right]$, for
$j=1, \ldots, n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Note that each vector \mathbf{a}_{j} is a vector in \mathbb{R}^{m}.

Vector and Matrix Equations

The vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{1}
\end{array}\right]
$$

In particular, \mathbf{b} is a linear combination of the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of Span

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}^{n}. The set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\operatorname{Span}(S) .
$$

It is called the subset of \mathbb{R}^{n} spanned by (a.k.a. generated by) the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

To say that a vector \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ means that there exists a set of scalars c_{1}, \ldots, c_{p} such that \mathbf{b} can be written as

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

Span

If \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$, then $\mathbf{b}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}$. From the previous result, we know this is equivalent to saying that the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{b}
$$

has a solution. This is in turn the same thing as saying the linear system with augmented matrix $\left[\mathbf{v}_{1} \cdots \mathbf{v}_{p} \mathbf{b}\right]$ is consistent.

Examples
Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{a}_{2}=\left[\begin{array}{c}-1 \\ 4 \\ -2\end{array}\right]$.
(a) Determine if $\mathbf{b}=\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

Q: Is \vec{b} a linear condonation of \vec{a}, and \vec{a}_{0} ? Is $x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}$ a consistent vector equation?
Is the system whose augmented matrix is $\left[\begin{array}{lll}\vec{a}_{1} & \vec{a}_{2} & \vec{b}\end{array}\right]$ consistent?
Let's use an ret: $[\vec{a}, \vec{a}, \vec{b}]=\left[\begin{array}{ccc}1 & -1 & 4 \\ 1 & 4 & 2 \\ 2 & -2 & 1\end{array}\right]$

$$
\xrightarrow{\text { ret }}[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \underbrace{}_{i^{j 0^{\prime}}} \text { covin }
$$

The system is in consistent, hance \vec{b} is not in $\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$.
(b) Determine if $\mathbf{b}=\left[\begin{array}{c}5 \\ -5 \\ 10\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{b}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 5 \\
1 & 4 & -5 \\
2 & -2 & 10
\end{array}\right]}
\end{aligned}
$$

\vec{b} is in $\operatorname{spm}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$. More over

$$
\vec{b}=3 \vec{a}_{1}-2 \vec{a}_{2}
$$

Another Example
Give a geometric description of the subset of \mathbb{R}^{2} given by $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$.
\vec{u} is in $\operatorname{Spon}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ if $\vec{u}=x_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]$ for some number x.

So this is all points of the form $(x, 0)$ for all possible x_{1}.

This is the x-axis in \mathbb{R}^{2}.

Span $\{\mathbf{v}\}$ in \mathbb{R}^{3}

If \mathbf{v} is any nonzero vector in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{v}\}$ is a line through the origin parallel to \mathbf{v}.

$\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ in \mathbb{R}^{3}

If \mathbf{v}_{1} and \mathbf{v}_{2} are nonzero, and nonparallel vectors in \mathbb{R}^{3}, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a plane containing the origin parallel to both vectors.

Example

Let $\mathbf{u}=(1,1)$ and $\mathbf{v}=(0,2)$ in \mathbb{R}^{2}. Show that for every pair of real numbers a and b, that (a, b) is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
we need to show that $x_{1} \vec{u}+x_{2} \vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$
is always consistent - is for all (a, b).

$$
\begin{array}{r}
{\left[\begin{array}{lll}
\vec{u} & \vec{v} & {\left[\begin{array}{l}
a \\
b
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & a \\
1 & 2 & b
\end{array}\right]} \\
-R_{1}+R_{2} \rightarrow R_{2} \quad\left[\begin{array}{lll}
1 & 0 & a \\
0 & 2 & b-a
\end{array}\right]
\end{array}
$$

In fact

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=a\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{b-a}{2}\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

