January 22 Math 3260 sec. 55 Spring 2020

Section 1.3: Vector Equations

We defined vectors in \mathbb{R}^n along with two operations. Scalars in our context are **real numbers**.

For **x** and **y** in \mathbb{R}^n and scalar *c*

Scalar multiplication cx =

$$\begin{bmatrix}
Cx_1 \\
Cx_2 \\
\vdots \\
Cx_n
\end{bmatrix}.$$

Vector Addition: x + y =

$$\begin{bmatrix}
x_1 + y_1 \\
x_2 + y_2 \\
\vdots \\
x_n + y_n
\end{bmatrix}$$

Algebraic Properties on \mathbb{R}^n

The **zero vector** in \mathbb{R}^n is the *n*-tuple of all zeros. It is denoted **0** (or $\vec{0}$).

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and d^1

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

(iii)
$$u + 0 = 0 + u = u$$
 (vii) $c(du) = d(cu) = (cd)u$

(iv)
$$u + (-u) = -u + u = 0$$
 (viii) $1u = u$

¹The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

January 17, 2020 2/54

 $\exists \rightarrow +$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3\mathbf{v}_1, -2\mathbf{v}_1 + 4\mathbf{v}_2, \quad \frac{1}{3}\mathbf{v}_2 + \sqrt{2}\mathbf{v}_1, \text{ and } \mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2.$$

January 17, 2020

3/54

Example

Let
$$\mathbf{a}_{1} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_{2} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$. Determine if \mathbf{b} can
be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2} .
 \mathbf{a}_{2} : Are then numbers (scalars) \times , and \times_{2}
such that $\times_{1}\vec{a}_{1} + \times_{2}\vec{a}_{2} = \vec{b}$?
Solution that $\begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} + \times_{2} \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} \times_{1} \\ -2 \\ -1 \end{bmatrix} + \begin{bmatrix} 3 \times 2 \\ 0 \\ 2 \times 2 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} \times_{1} \\ -2 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} \times_{1} \\ -2 \\ -4 \end{bmatrix} + \begin{bmatrix} 3 \times 2 \\ 0 \\ 2 \times 2 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} \times_{1} \\ -2 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} \times_{1} \\ -2 \\ -2 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} \times_{1} \\ -2 \\ -2 \\ -4 \end{bmatrix} + \begin{bmatrix} 3 \times 2 \\ 0 \\ 2 \times 2 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} -2 \\ -2 \\ -3 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} \times_{1} \\ -2 \\ -3 \\ -2 \\ -3 \end{bmatrix}$

$$\begin{array}{rcl} & & X_1 + 3X_2 = -2 \\ & & -2X_1 & = -2 \\ & & -2X_1 & = -2 \\ & & -X_1 + 2X_2 = -3 \\ & & & & & \\ & & & \\$$

In fact, we see that $X_{1}=1$ and $X_{2}=-1$ so $\tilde{b}=\tilde{a}_{1}-\tilde{a}_{2}$.

Some Convenient Notation

Letting
$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$, and in general $\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$, for $j = 1, ..., n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

Note that each vector \mathbf{a}_j is a vector in \mathbb{R}^m .

January 17, 2020 7/54

2

イロト イヨト イヨト イヨト

Vector and Matrix Equations

The vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}] \,. \tag{1}$$

In particular, **b** is a linear combination of the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of **Span**

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by

 $\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}=\operatorname{Span}(S).$

It is called the subset of \mathbb{R}^n spanned by (a.k.a. generated by) the set $\{v_1, ..., v_n\}$.

To say that a vector **b** is in Span{ v_1, \ldots, v_p } means that there exists a set of scalars c_1, \ldots, c_p such that **b** can be written as

 $C_1 \mathbf{V}_1 + \cdots + C_p \mathbf{V}_p$

January 17, 2020

9/54

If **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ }, then $\mathbf{b} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$. From the previous result, we know this is equivalent to saying that the vector equation

$$x_1\mathbf{v}_1+\cdots+x_p\mathbf{v}_p=\mathbf{b}$$

January 17, 2020

10/54

has a solution. This is in turn the same thing as saying the linear system with augmented matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p \mathbf{b}]$ is consistent.

Examples
Let
$$\mathbf{a}_1 = \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$$
, and $\mathbf{a}_2 = \begin{bmatrix} -1\\ 4\\ -2 \end{bmatrix}$.
(a) Determine if $\mathbf{b} = \begin{bmatrix} 4\\ 2\\ 1 \end{bmatrix}$ is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.
(a) Determine if $\mathbf{b} = \begin{bmatrix} 4\\ 2\\ 1 \end{bmatrix}$ is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.
(a) Let \mathbf{b} a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{a}_2 ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{a}_1 and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a linear combination of \mathbf{b} and \mathbf{b} ?
Let \mathbf{b} be a l

January 17, 2020 11/54

J 15 The system is in consistent, hence not in Spar [a, az].

(b) Determine if
$$\mathbf{b} = \begin{bmatrix} 5 \\ -5 \\ 10 \end{bmatrix}$$
 is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.

$$\begin{bmatrix} a_1 & a_2 & b \end{bmatrix} = \begin{bmatrix} 1 & -1 & 5 \\ 1 & y & -5 \\ 2 & -2 & 10 \end{bmatrix}$$

$$\begin{bmatrix} cref \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} cref \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} cref \\ color \\ co$$

b= 3a, -2a2

イロト イラト イヨト イヨト ヨー のへで January 17, 2020 14/54

Another Example

Give a geometric description of the subset of \mathbb{R}^2 given by Span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$. $\vec{\mathcal{L}}_{1,2} = \sum_{n=1}^{\infty} \left\{ \begin{bmatrix} n \\ n \end{bmatrix} \right\} \quad \text{if} \quad \vec{\mathcal{L}} = \times_{n} \begin{bmatrix} n \\ n \end{bmatrix} = \begin{bmatrix} \times_{n} \\ n \end{bmatrix}$ for some number X. So this is all points of the form (x, 0) for all possible x. This is the x-axis in \mathbb{R}^2

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Span $\{\mathbf{v}\}$ in \mathbb{R}^3

If **v** is any nonzero vector in \mathbb{R}^3 , then Span{**v**} is a line through the origin parallel to **v**.

Span $\{v_1, v_2\}$ in \mathbb{R}^3

If v_1 and v_2 are nonzero, and nonparallel vectors in \mathbb{R}^3 , then $Span\{v_1, v_2\}$ is a plane containing the origin parallel to both vectors.

Example

Let $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (0, 2)$ in \mathbb{R}^2 . Show that for every pair of real numbers *a* and *b*, that (a, b) is in Span $\{\mathbf{u}, \mathbf{v}\}$.

we need to show that X, u + Xz = [6] is always consistent - is for all (G, b). $\begin{bmatrix} \vec{L} & \vec{V} & \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} I & o & a \\ I & z & b \end{bmatrix}$ $-R_1+R_2 \rightarrow R_2$ $\begin{pmatrix} l & 0 & 0 \\ 0 & 2 & b - 0 \end{pmatrix}$

. . .

January 17, 2020 18/54

イロト 不得 トイヨト イヨト 二日

$$\frac{1}{2}R_{2} \rightarrow R_{2} \qquad \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & \frac{b-a}{2} \end{bmatrix}$$

$$\int dw^{2} \sqrt{4}e^{-t}$$

$$\int dw^{2} \sqrt{4}e^{-t}$$

$$\int dw^{2} \sqrt{4}e^{-t}$$

$$\int dw^{2} \sqrt{4}e^{-t}$$

$$\int e^{-t} \sqrt{4}e^{-t}$$